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Abstract 

The Department of Defense uses modeling and simulation systems in many 

various roles, from research and training to modeling likely outcomes of command 

decisions.  Simulation systems have been increasing in complexity with the increased 

capability of low-cost computer systems to support these DOD requirements.  The 

demand for scenarios is also increasing, but the complexity of the simulation systems has 

caused a bottleneck in scenario development due to the limited number of individuals 

with knowledge of the arcane simulator languages in which these scenarios are written.  

This research combines the results of previous AFIT efforts in visual modeling 

languages to create a language that unifies description of entities within a scenario with 

its behavior using a visual tool that was developed in the course of this research.  The 

resulting language has a grammar and syntax that can be parsed from the visual 

representation of the scenario.  The language is designed so that scenarios can be 

described in a generic manner, not tied to a specific simulation system, allowing the 

future development of modules to translate the generic scenario into simulation system 

specific scenarios.  
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VISUAL UNIFIED MODELING LANGUAGE FOR THE COMPOSITION OF 
SCENARIOS IN MODELING AND SIMULATION SYSTEMS 

 
 

I.  Introduction 

The environment that the United States military finds itself in is increasingly 

complex.  Weapon systems today are orders of magnitude greater in sophistication over 

previous generations.  World events also move at a greater speed due to the state of the 

art in communications equipment, infrastructure and the 24-hour news cycle. 

In order to effectively manage resources in this environment, the Department of 

Defense (DOD) has relied increasingly on simulation and modeling systems.  These 

systems make it possible to design, develop and test system components, concepts, 

strategic plans, training and deployment—all at a reasonable cost.  Nevertheless, the cost 

of using these simulation systems is also increasing with its own complexity.  This cost is 

primarily in terms of effort and expertise in the construction of scenarios for use within 

the simulation systems. 

1.1 Background 

Historically, simulation and modeling systems have “been independent, stand-

alone systems that address specific problems and adhere to a unique architecture 

established by the designer” [17:806].  These independent systems had their own distinct 

format for entity and scenario depiction due to the architecture and specific analytical 

focus of the model by the simulation system. 
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Nevertheless, many entities used were common to the different systems; e.g., one 

system used F-16 aircraft in its simulation as would another system.  These entity models 

and scenarios of one simulation system were typically incompatible with another.  The 

DOD and other interested parties recognized the utility of interoperable simulation 

components—entities that can be used across different simulation tools. 

Major efforts in achieving interoperability include HLA, the High Level 

Architecture.  This approach provides a framework within which components created 

apart from a specific simulation modeling system can interact with other components.  

However, components must comply with HLA requirements to operate in this 

environment; this means that many excellent legacy entities are not usable within this 

framework.  The question became one of transformation.  Could components and 

scenarios be transformed from their native format into another simulation system’s 

format?  Better yet, is it possible to create a universal format that could transform existing 

components and scenarios into its form and then transform from the universal format into 

another system format?  Ideally, this universal form should support a transform to create 

scenarios that are HLA compliant. 

Past AFIT research on reuse of components of legacy simulation systems have 

concentrated on database stores and conversions [1; 4; 6; 12; 13].  While this approach 

directly addresses reuse, construction of scenarios using these components remains a 

human-intensive effort.  Consequently AFIT began research into the use of visual tools to 

aid in the understanding and ultimately construction of scenarios [5; 2].  This thesis 

continues this area of research and attempts to bridge the two efforts (Figure 1). 
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Figure 1.  AFIT Research in Scenario Reuse and Visual Tools 

1.2 Problem Statement 

The preliminary work of Bartley [2] explored the application of graphical 

description of scenarios, called the Scenario-Based Specification Diagram (SBSD), in an 

actual simulation modeling system, specifically OneSAF (One Semi-Automated Forces 

simulator used primarily by the U.S. Army).  The work demonstrated the concept as 
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sound; however, it was limited to describing the scenarios from the system’s syntax into a 

form more readily understood by human users.  It did not permit the conversion of visual 

descriptions into a form that OneSAF could use as input.  The present problem then is an 

extention of Bartley’s work—is a visual language viable that describes scenarios in a 

generic or universal format that may subsequently be translated into machine usable 

input for use by specific simulation systems?  The generic format is based on the common 

object model database format developed by Colonese and refined by Breighner; the 

details of these efforts are provided in chapter 2. 

1.3 Research Objectives 

This research focuses primarily on the reduction of visual language components 

to a granularity fine enough to describe behaviors inherent in a scenario.  The key 

question to the effort is whether it is possible for a visual component language to be rich 

enough to describe adequately—in terms of precision and without ambiguity—behaviors 

that can be compiled into a generic or universal form that is ultimately transformed into a 

machine-usable scenario. 

The transformation from generic data form to a specific system form is relatively 

trivial, provided the generic form contains sufficient detail.  Breighner demonstrated this 

in his research by transforming Suppressor Composite Mission Simulation System 

(SUPPRESSOR) simulation system scenario components into Simulated Warfare 

Environment Generator (SWEG) components [4:95-96, 103-111]. 

The effort here is to determine which semantic elements are required to 

adequately express the scenario components in the universal (visual) form and then to 
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implement them in a visual design editor tool.  Additionally a translator to a specific 

simulation system must be created to extract the universal component and transform the 

scenario component into a form usable to the simulator. 

1.3.1 Methodology 

This document covers previous AFIT research efforts for extensibility and 

synthesis as well as the current state of outside research in describing entity behavior 

models including object-oriented modeling systems such as message sequence charts 

(MSC) and its variants, hierarchical state machine models and the ADORA modeling 

language [9; 20].  Many of these modeling systems extend or augment the unified 

modeling language (UML) and provide a source of insight into what makes an effective 

behavior descriptor.  As scenarios are a marrying of behaviors within a mission to the 

entities that perform these behaviors, the advancements made in behavior modeling 

languages will likely contribute to a better understanding of generalized behavior 

semantics as required for a universal visual simulation scenario editor. 

This report also documents the combination of the interoperable scenario database 

with the visual scenario description language, the merging of two threads of research at 

AFIT along with the knowledge gleaned from the evaluation of current behavior 

modeling descriptors.  The result is a software tool that allows the user to compose 

scenarios in a visual manner with a minimum of simulator-specific language knowledge, 

provided the translation utility exists for the target simulation system. 
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Finally, this document describes the creation of sample scenarios in the universal 

visual editor and the generation of the corresponding scenario output for a specific 

simulation system. 

1.3.2 Assumptions/Limitations 

It is unlikely that all of the required values for a scenario in a specific simulation 

system can be provided in a universal tool [6:3].  The tool transforming the scenario from 

the universal to specific form must provide the simulation system-specific requirements. 

1.3.3 Implications 

The goal of this research is to demonstrate the viability of the visual scenario 

language and tools.  If successful, these tools will provide the means by which problem 

domain experts can quickly and reliably create scenarios for simulators.  This will reduce 

the bottleneck of the limited number of software programming experts of a given 

simulator system—who may or may not understand a given military problem well—to 

create scenarios for the problem.  The effect should be similar to the revolution in 

software development caused by the progress of computer languages from machine 

language to modern visual programming environments, such as Visual C++. 

Furthermore, the scenarios created with this tool suite should be highly reusable 

in other simulation systems than the specific system that the author of the scenario may 

have in mind while creating it.  All that would be required is the corresponding 

transformation tool for the target simulation system. 
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1.4 Preview 

Chapter two provides a summary of a corpus of research at AFIT in the area of 

simulation component reuse and the current state-of-the-art of work with a component-

based integration tool used to create virtual simulations from heterogeneous simulation 

components (ModISE from Science Application International Corporation), a visual 

depiction of entity behavior (SimBionic from Stottler Henke) and a highly interesting 

cohesive object-oriented design charting methodology (ADORA from Institute of 

Information Science, University of Zürich). 

Chapter three discusses the problem of extracting semantic information from the 

scenario task frames as well as its context in order to store the information in a universal 

format.  This provides the foundation for development of the transformation module to 

operate with the visual language tool.  This semantic information—metadata—must be 

captured for reuse of existing scenarios into different simulation systems.  The metadata, 

along with specific instance data, must be encoded in the visual tool for end-users to 

develop universal form scenarios.  Additionally, the visual language must be unified—the 

various attributes or views of the language must work as a coherent whole.  This also is 

discussed in chapter three. 

Chapter four documents the implementation of the visual language tool, its 

database store and the transformation module that permits the creation of specific 

scenario code usable in a specific simulation system.  The architecture of the system is 

fully defined along with test execution runs. 
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Chapter five contains the conclusions reached in the effort along with suggestions 

for further research. 
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II. Literature Review 

2.1 Introduction 

There is a very high interest in creating composable simulations: the DOD, other 

government organizations, industry, and academic communities among others each 

recognize the value of creating reliable simulations.  The data obtained from simulation 

runs could save an organization literally millions of dollars that would be better directed 

to other efforts or to provide an even a more efficient tuning of a current activity.  The 

bottleneck, as discussed in the previous chapter, is the growing complexity of simulation 

systems and the proportionate resources and expertise required to create scenarios in 

these simulations. 

To better understand the current state of research and where best to focus future 

research, the following review is offered. 

2.2 Simulation Systems 

Simulation systems vary in focus and scope.  From a DOD perspective, 

simulation types may be described in a hierarchical form (Figure 2) [10:781-782].  The 

levels, from the bottom of the pyramid, are the specialty level, which focuses on the 

engineering aspects of a system or system component (electrical, stress, mechanical, 

etc.); the engagement level, which permits tests of aggregate physical entities (aircraft, 

ships, missiles, etc.) and may include some level of human interaction; the mission level 

(tactical-oriented), which begins a higher level of concept and facilitates the development 

of improved tactics and training; and the campaign level (theater-oriented), which begins 
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a crossover from tactical towards strategic operations and training.  The tip of the 

pyramid may be considered to represent the next aspect, global strategic, which allows 

policy makers to ask “what if” questions, and gain insight from the attempt to answer 

these questions.  These insights aid decision makers in developing policy to effect 

national goals.  The focus of this research and review is on the mission level of 

simulation systems, although the research could be applied to other levels as well. 

 

Figure 2.  Hierarchy of simulation types [10:782] 
 
 

The mission level involves components such as aircraft, sensors, terrain, etc.  

Simulators of this category allow planners to determine if a particular tactic is effective in 

a specific environment.  It also covers simulations that interact with humans in a training 

situation; trainees could be pilots, operational commanders, tank commanders or any 

other individual or team member playing out a scenario.  There is some overlap with the 
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lower level of simulation as well, since, for example, a pilot must operate an aircraft that 

has certain capabilities and constraints. 

As noted earlier, these simulation systems are increasingly complex as they must 

accurately model—to the level required by the scenario—the aircraft, radar and other 

components with which the simulation user (trainee, tactician) must operate, encounter or 

otherwise interact.  The increased complexity make the simulation systems even more 

attractive to users as they can press the limits to determine what really can work without 

actually endangering real people or equipment—or use equipment that has not yet been 

created.  In this way, planners and developers can determine whether the proposed 

equipment would be worth pursuing. 

With the increased complexity comes increased cost to accurately develop 

scenarios.  But because of the widespread interest in the utility of simulations and the 

recognition of the increasing cost—in time as well as money—of creating scenarios, 

there has been a large body of work in improving the reusability of simulation 

components and simplifying the creation of entity behavior, accomplished in the 

simulation community—private and public organizations as well as academic institutions 

such as AFIT.  The next section highlights some of the relevant research conducted at 

AFIT. 

2.3 Research at AFIT 

Relevant research at AFIT has followed generally two threads: one thread has 

focused on scenario research in terms of capturing data from existing simulation systems 
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for reuse in other simulation systems; the other thread has focused on visual depictions of 

components and behavior. 

2.3.1 Scenario Reuse Research 

Research in the area of scenario reuse began with Weber [19] and Stratton [18].  

Weber focused on the extraction of scenario data from existing simulation data stores for 

the Air Force Research Laboratory (AFRL) into an object-oriented scenario database.  

Stratton created an interface for users to generate a new scenario instance from the 

object-oriented scenario database using translator modules for the target simulation 

system, the Suppressor Composite Mission Simulation System (SUPPRESSOR). 

Colonese [6] adapted the framework from Stratton’s research and further refined 

it into a more generalized form.  In her research, she described a methodology to 

integrate data of scenarios from the Extended Air Defense Simulation (EADSIM) and 

SUPPRESSOR systems using an object-oriented database system.  Her work focused on 

creating a global object-oriented database that could generate scenarios from the global 

data into the desired target simulation form.  Figure 3 shows a general view of Colonese’s 

global database system as it fits with various simulation systems used at AFRL. 

Noe [13], while not specifically involved in the reuse of scenarios in disparate 

simulation systems, focused on fitting software tools to work cooperatively, particularly 

those tools that were not specifically designed to work as part of an integrated suite.  Her 

research demonstrated that it is possible to create “wrappers” around software such that 

the net result was an “extension” of capability.  What one individual tool could not do, 

another provided.  Noe developed a process to functionally integrate these separate 



 

13 

systems, shown in Table 1.  Her methodology allows developers to leverage existing 

extensibility in the individual systems.  The application to simulation systems is the 

possibility of using components from separate simulation systems in a cooperative 

manner.  For example, one simulation may have the precise implementation of an 

aircraft, another system a sensor array.  Using the principles Noe discovered in her 

research, it may be possible to put wrappers around the two simulation systems in such a 

way that the two behave as one system. 

 

Figure 3.  Global Object-Oriented Database for Simulation Systems [6:4] 
 
 

By using this integration process, it is possible to reuse components.  This 

approach however, still leads to a manual effort to create new scenarios.  Nevertheless, it 

may be possible to automate some of this integration with the cost of some overhead to 

the original wrapper. 
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Ashby [1] continued this thread of research by proposing an automated tool to 

support the global format object-oriented database, a logical extension of the Colonese 

research, and blending in some of the results of Noe’s work. 

Table 1. Methodology for Tool Integration [13:32] 

Step 1: 

Determine for each tool: 
Input Mechanism 
Output Mechanism 
Extendability 

Step 2: 
Determine for each tool pair: 
Extendability Class 
Data Compatibility 

Step 3: 

Apply design rules to determine structure of system. 
Provide output of first tool and input of second tool to determine communication path. 
Apply design rules based on extendability class to determine control integration 
implementation and data transformation. 

 

McDonald [12] and Breighner [4] concentrated on agent-based searching, 

retrieval and translation of simulation components.  Breighner’s work, in particular, 

focused on rapid selection and retrieval of simulation components.  The data stores of the 

AFRL simulation systems are huge and earlier attempts to create the global object-

oriented database still required a significant amount of human intervention, specifically in 

identifying the semantic essence of a simulation component.  Breighner’s research 

produced a system that eased the human intervention required to create and use a catalog 

of scenario components to construct new scenarios across disparate simulator systems.  

Additionally, Breighner developed a translator tool to convert SUPPRESSOR scenario 

components into Simulated Warfare Environment Generator (SWEG) simulation format 

[4:103-111]. 
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2.3.2 Visual Language Research 

Canli [5] began the visual thread of research at AFIT with his work on a visual 

meta-data language.  The language he invented, the Visual Language for Generic 

Modeling (VLGM), clearly permits rapid construction of entities from simpler 

components.  While his work concentrated on component structure rather than behavior, 

he was able to demonstrate that UML is inadequate to the task of coherently mapping 

behavior to scenario components.  He also demonstrated the feasibility of visual 

languages to provide the ability to confirm valid connections between components and 

conversely reject invalid connections through examples involving electrical components. 

Bartley [2] began research at AFIT in modeling behavior of simulation 

components within a scenario.  She first described the requirements of a scenario 

behavior language—it must allow for reactions, must accept parameters, must represent 

temporal conditions, must be composable, must focus on activities rather than transitions, 

and must allow users to define behavior at a high level of abstraction—and then 

examined available means of describing behavior. 

Her research covered traditional diagrams used in software development to 

describe behavior.  While there are many similarities between object-oriented software 

development and simulation scenario development, there are significant differences.  She 

identified these and demonstrated how the classic diagrams failed to completely fulfill the 

requirements for a scenario description language, while retaining those aspects that did 

meet the requirements.  As a result, Bartley developed a new behavior diagram language, 
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forged from these classic sources but with new aspects that allowed the unique 

requirements for scenario behavior description. 

This new visual language tool is called the Scenario-Based Specification Diagram 

(SBSD) [2:77].  Figure 4 shows the key elements of the SBSD language.  SBSD uses 

nodes to describe tasks that a scenario component is to perform.  Upon completion of a 

task, the behavior chart plots the transition to the next task the component is to perform.  

This is different from classic approaches in that these task nodes are not simple states that 

an entity may go through.  Indeed, unlike many of the classic charts Bartley discussed 

(e.g., activity graphs), tasks in SBSD may be interrupted by the arrival of some other 

event or entity, which she termed a reaction-type transition.  Otherwise, the activities of a 

task node must be completed before a transition occurs.  Therefore the focus of the 

diagram is on the activities that a component must perform, rather than the change in data 

within an object.  Tasks may be grouped into a multitask node to aid user understanding 

by abstracting some of the details.  The multitask nodes may also be expanded to show 

the details when required by the system user.  Figure 5 shows a multitask node. 

  

Figure 4.  Elements of the Scenario-Based Specification Diagram (SBSD) [2:79, 85] 
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The requirements of conditions, temporal conditions and reaction events are 

associated with their corresponding transition.  An example containing conditional and 

temporary reaction transitions with the conditions are shown in Figure 6.  In the figure, 

the aircraft remains at the starting task (awaiting orders) until the associated condition 

“On Order Command” is satisfied, at which point the aircraft executes task FWA Ingress.  

Once the aircraft is within 200 feet of the target, the aircraft reacts by executing the Air 

Attack task.  This reaction is permanent; the aircraft does not resume the FWA Ingress 

upon completion of the Air Attack task. 

 

 

Figure 5.  An SBSD diagram with a Multitask Node [2:82] 
 
 

As a test bed to prove the effectiveness of the SBSD language, Bartley used 

scenarios from the One Semi-Automated Forces (OneSAF) simulation system, produced 

by STRICOM and used by the U.S. Army.  Her results demonstrated that the language 

reliably described the scenarios with the desired requirements she discovered over the 
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course of her research.  Unfortunately, she was only able to describe existing scenarios 

with the tool; time constraints kept her from performing the reverse: to create working 

OneSAF scenarios from the language alone. 

Besides the SBSD language, Bartley created another visual tool used to show 

aggregation and composition of elements within a scenario as well as hierarchical order 

of the constituent entities.  This other technique involves the use of treemaps.  The 

treemap graph not only displays hierarchical information, but also provides a visual clue 

as to relative size and strength of entities involved in a scenario simulation execution run.  

Figure 7 shows a treemap of a OneSAF scenario. 

 

Figure 6.  An SBSD diagram with a Temporary Reaction Transition [2:93] 
 
 

Bartley’s work is a breakthrough in describing the behavior of a scenario entity 

within a simulation, avoiding the pitfalls of other contemporary behavior depiction and 

pointing a way to solve some of the more difficult problems in rapid scenario creation. 
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Figure 7.  A Treemap of a OneSAF Scenario [2:114] 
 

2.4 Other Research and Development 

Many other organizations have added to the arena of simulation research.  Some 

of these are not directly focused in scenario composition, but have potential application in 

that arena.  An overview of a few significant efforts includes ModISE (emphasis on 

interoperability of simulation components), SimBionic (emphasis on graphical 

representation and description of entity behavior) and ADORA (a unified coherent 

modeling paradigm for object-oriented analysis and design).  Each is discussed in turn. 
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2.4.1 Modular Interoperable Synthetic Environment (ModISE) 

As part of efforts to develop a framework that encourages reuse of components, 

researchers at the Army Simulation Training and Instrumentation Command (STRICOM) 

and the Science Application International Corporation (SAIC) have created the Modular 

Interoperable Synthetic Environment (ModISE) system [3:1].  The goal is to develop an 

open architecture that allows users to create components that can be used as needed 

within new scenarios.  The architecture supports components that use Defense Modeling 

and Simulations Office’s (DMSO)’s high level architecture (HLA) data representation as 

well as others. 

ModISE is based upon an interoperability engine (IE) that assembles the 

components required for a scenario from a repository that may be a web-based, 

distributed database or even a simple local database.  The IE provides the virtual 

environment within which the simulation will execute.  The actual execution of the 

simulation may be distributed depending upon the components used within the simulation 

run. 

The repository contains Mapper/Translator/Modeler (MTM) components that 

represent entities, functions, environment—or a host of other objects.  These MTMs must 

provide the interface for the IE to use them as well as metadata about the component so 

that the user can select the components required for the scenario [3:3].  MTM metadata 

can also contain metadata on what other components the selected component requires. 

The user selects the required components—the MTMs—through a graphical user 

interface and builds an Execution Specification (ESpec).  The ESpec is stored in the 
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repository with the MTMs.  During simulation execution, the IE loads the ESpec which 

provides the IE with the list of MTMs in the simulation along with the parameters for the 

scenario required for the run.  The IE then loads the MTMs and then coordinates the 

simulation execution, including simulation timing, simulation event processing and 

interfacing data between components during execution of the simulation [3:5]. 

ModISE has been used successfully in trials with the Army and is offered as a 

product from SAIC.  While it does promote reuse of components once built, it still 

requires a great deal of programmer effort to build MTM components.  It does not deal 

with legacy components as of this research and there are still no automation tools to assist 

in the creation of MTM components.  SAIC hopes to build tools to address these issues. 

2.4.2 SimBionic 

Daniel Fu and Ryan Houlette of Stottler Henke Associates discovered in the 

course of their research that developers typically rewrote the AI engines for games and 

simulations from scratch rather than leverage past development [7:81].  Developers they 

interviewed from various organizations claimed that the AI rules, which described 

behavior of computer-controlled entities, were radically different from application to 

application and therefore it was impossible to reuse or even to build an engine that could 

simplify the construction of these entity behaviors.  Fu and Houlette hypothesized that 

this was a false assumption and began development in a simulation logic environment 

editor and runtime engine initially called BrainFrame[7:81], but later renamed SimBionic 

[16:7].  SimBionic’s behavioral modeling is at heart an implementation of a hierarchical 

finite state machine. 
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SimBionic allows developers to create the behavioral logic of computer controlled 

entities using a graphical environment.  The system is partitioned into development and 

runtime environments.  The development environment (called the authoring tool in 

Figure 8) allows the user to describe the behavior of the entities in a graphical form with 

states and transitions (Figure 9).  The states (shown as rectangles in the diagram) are 

tasks that the entity must perform—or states that the entity is in.  The ovals are predicates 

that must be true for the entity to transition to the next task state.  There may be multiple 

transitions from a given task state.  They are numbered in order of test precedence; the 

predicate associated with transition 1 is checked first, next transition 2, etc.  Task states 

may themselves be defined in another diagram; i.e., the task diagrams may be nested. 

 

Figure 8.  Overview of the SimBionic system [16:16] 
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The user creating the behavior diagrams doesn’t need to be a skilled computer 

programmer; just an understanding of the entity’s behavior is required.  Thus, the 

behavior modeled by the entity can be described in a reasonably abstract manner, and is a 

positive step in assisting application domain experts a primary role in creating scenarios. 

 

Figure 9.  Example of SimBionic behavior graph [7:82] 
 

Nevertheless, the authoring tool still requires a programmer to complete the 

connections of the behaviors for the simulation or game to operate with the SimBionic 

runtime module, shown in the “actions and predicate definitions” oval in Figure 8.  So 

while domain experts can clearly play a more direct role in the design of computer-
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controlled component behavior, computer programmers will still play a significant role in 

completing the simulation. 

SimBionic does allow the creation of a behavior library where previously created 

entity behaviors can be stored for later reuse.  However, the mechanism is very simple.  

The project’s behaviors are stored and imported.  The library is thus not an integrated 

behavior database.  It is strongly dependent on users’ awareness of existing behavior 

diagrams, what the semantic meaning of the diagram is and locating the behaviors 

diagrams for reuse.  On the positive side, if a diagram is selected from the library, the 

system knows the dependencies as the diagrams must be a coherent unit.  On the other 

hand, this can lead to multiple copies of behavior diagrams spanning the library, each of 

which may be inconsistent with other copies, much as using copies of computer source 

code across projects.  A disciplined organization can create a separate database system 

(such as Oracle) that stores the semantic meaning of the diagrams along with the 

diagrams themselves; but this is an external activity requiring human interaction, not 

inherent in SimBionic itself. 

SimBionic as of this research supports C++ and Java simulation programming.  

The bottom line is that while it is a significant tool to aid in the construction of new 

simulation systems, it provides little support to reuse scenarios in current systems. 

2.4.3 Analysis and Description of Requirements and Architecture (ADORA) 

The realm of software engineering, particularly object-oriented development, has 

been a fertile ground for developing visual tools to aid in the construction of large-scale 

systems.  Currently, most practitioners have adopted the unified modeling language 
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(UML), defined by the Object Management Group (OMG), as the standard for analysis 

and design of these large object-oriented systems.  UML is the culmination of many 

previous attempts to describe object-oriented systems including Object Modeling 

Technique (OMT).  UML has many virtues: it depicts various models of a system; it is 

extensible; and it is an industry standard.  Nevertheless, UML still suffers from certain 

difficulties from the perspective of software development as well as that of simulation 

scenario composition. 

The single greatest flaw in UML is the lack of an integrated, cohesive overall 

view of the system from the separate modeling diagrams [9:426].  UML has class 

diagrams, use cases, collaboration charts and state charts (among others).  These 

diagrams are loosely coupled, which provides a high degree of flexibility.  Unfortunately, 

it also makes integration of these model aspects difficult.  If a given design has 

inconsistencies that span across two different type of diagrams, the inconsistencies may 

be overlooked until later in development—where it is far more expensive in time and 

resources to repair. 

Researchers at the Institute of Information Science, University of Zürich have 

been working on another modeling system that preserves the visual simplicity of UML 

while overcoming its inherent weaknesses.  The ADORA modeling system is a major work 

in this area. 

2.4.3.1 Description and Analysis of ADORA 

The ADORA system is a highly integrated diagram that incorporates all of the 

aspects of the modeled system.  It combines behavior, structure and collaboration all in 
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one diagram.  In order to manage complexity, ADORA provides different views to the 

diagram.  How ADORA is able to do all this is due to its unconventional concepts [9:426]: 

1.  ADORA works with abstract objects, not classes.  An ADORA model places an 

object within a specific context of the system which typically constrains its behavior.  

Commonalities of objects (which are grouped as classes in conventional diagramming 

methods such as UML) are modeled in object types in ADORA. 

2.  ADORA structures the modeled system in a strict hierarchical decomposition 

form.  This permits a consistent and recursive approach to decomposing a complex 

system into simpler, more manageable subsystems.  This is the key to ADORA’s powerful 

cohesive approach to modeling systems. 

3.  ADORA uses an integrated model rather than a collection of models (such as 

UML).  Thus the various aspects of a model (behavior, structure, collaboration, etc.) are 

all contained within the same model.  However, not all aspects are visible at the same 

time as this level of detail would overwhelm the user.  Instead, ADORA allows the user to 

select views of the model showing those aspect(s) in which the user is interested. 

The ADORA system tool is composed of a base view which shows the abstract 

objects in relation to each other.  This view can be very abstract or drilled down to the 

lowest level of detail described in the modeled system.  The base view is shown in figure 

10.  Abstract objects are depicted as rectangles.  In addition, ADORA models abstract 

object sets as well as objects.  An abstract object set is a collection of one or more 

instances of the same type of abstract object, typically with cardinality to abstract objects 

in its context.  In Figure 10, the RoomModule is an abstract object set. 
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Figure 10.  An ADORA base view [9:427] 
 

A view can be partitioned such that the user views only a relevant subsystem.  In 

Figure 11 the base view is the RoomModule partition augmented with a behavior view, 

shown both by state transition graphs and state transition tables.  Note how the behavior 

is displayed in the context of the structure of the abstract object set. 

 

Figure 11.  A partitioned ADORA base view (of the RoomModule abstract object set) 
combined with its behavior [9:432] 
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There are several other views offered in the modeling system.  Nevertheless, the 

portions discussed show a potential for application within a scenario construction context 

rather than solely for analysis and design of object-oriented systems. 

2.4.3.2 Conclusion on ADORA 

The ADORA system has a great deal of potential as an analysis and design tool for 

software developers.  Additionally, it appears to be an excellent starting point for further 

research in simulation-scenario development integration.  The most significant weakness 

of ADORA for this usage is the fact that it is intended for software development, which 

tends to be deterministic; i.e., object associations are not probabilistic.  Simulation 

components within a scenario, on the other hand, associate frequently by stochastic 

means; an object may or may not associate with another object. 

A modified form of the ADORA system, using Bartley’s Scenario-Based 

Specification Diagram language as an augmentation of the behavior description, is a 

promising candidate for a unified scenario composition language and tool.  Such a tool 

would incorporate the hierarchical view of the components involved in a scenario (similar 

to Bartley’s treemap view) in the structural base view and add the behavioral description 

(Bartley’s SBSD graphs) into one integrated model. 

2.5 Summary 

The wide use of simulation systems as an economical means of training personnel 

and developing effective tactics for a given scenario among many other practical uses has 

led to a very large number of simulation systems, each with its own distinct format of 
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representing entities.  Most simulation systems have components that overlap those of 

other systems.  Since a significant amount of time has already been expended to develop 

these entities and scenarios, it is obvious that component reuse would be highly 

beneficial.  Unfortunately, the unique means to represent the scenarios and constituent 

components within each simulation system has been an impediment to their reuse. 

Much research has been ongoing both at AFIT and other organizations to 

overcome this obstacle.  AFIT researchers have worked on building a global format for 

converting scenario components from a simulation system specific format to another 

system format, allowing simulation scenario developers to avoid reinventing the wheel.  

AFIT research has developed rapid collation and presentation of these components 

through agent-based systems and AFIT has led the way in developing visual tools to map 

entity behavior within a scenario. 

The effort now remains to apply the visual language with any necessary 

extensions in the creation of new scenarios, using existing scenario components, into a 

form for use of a live simulator system.  That is the objective of this research. 
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III.  Methodology 

3.1 Introduction 

As discussed in Chapter 2, there have been significant advances in the arena of 

composable simulation as well as visual depiction of components and behaviors.  The 

goal of this present work is to bring together the two main threads of research conducted 

at AFIT: creating components with behaviors using visual language tools in a global or 

generic format that may be transformed into simulation-usable products.  It also seeks to 

unify the visual aspects of the language into one coherent model.  This chapter covers 

both the approach to accomplish these goals and the definition of the criteria to determine 

success. 

3.2 Background 

The following section discusses the two aspects of the problems—semantic 

meaning in existing scenarios and the process to create a unified visual language—to 

overcome in order to describe a solution plan. 

3.2.1 Semantic Meaning in Existing Scenario Components 

The information contained within a scenario component exists at two levels.  One 

is at the face level—the information that the entity contains and accesses directly.  The 

other level is semantic—meaning about the data, which is not typically contained within 

the entity or the data about the data; i.e., metadata.  For a scenario developer to use an 

existing component in a new scenario it is not enough to know what is in a component; 

the developer must know about the component.  For example, a component may have 
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behaviors (or tasks) stored within its definition.  But the developer would be better served 

to know what mission the tasks are meant to accomplish—perusing the tasks would be 

arduous for the developer to find the proper component for reuse. 

Thus, the visual language must provide a means to enter and display metadata 

about the scenario component, and—if and where possible—derive meaning, i.e., 

“semantics,” from existing scenario components.  This semantic information must be 

stored in some form of a global scenario component database in a searchable format.  

Previous AFIT efforts—specifically Colonese [6], McDonald [12] and Breighner [4]—

provided one approach to accomplish this goal. 

 

Figure 12.  Generation of a Scenario [6:37] 
 

The Colonese model for creating a scenario from the global object-oriented 

database for a specific simulation system is shown in Figure 12.  This is the ideal form 
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she envisioned rather than the implemented form she created due to time and scope 

constraints.  The Integration Dictionary in the figure provided the means of storing 

semantic data linked with the actual scenario component, or, in Colonese’s terms, the 

“conceptual class” which contains the metadata as well as the “real class” [6:41,43]. 

Breighner’s research [4:48-49] yielded an indexing scheme for rapid searching of 

the database.  This technique would interface with the proposed global database to create 

a more useful end-user environment.   Indeed, it is still a viable approach to store and 

retrieve scenario information. 

However, generic data transfer between information systems has improved over 

the time since this research was accomplished.  Therefore, the Colonese and Breighner 

methods are left to other developers to further refine the system for real world usage. This 

effort instead uses an XML approach for generic data storage, search and retrieval.  This 

seemed a better approach due to the method of describing scenarios in the visual 

language rather than instances of scenarios. 

By using this scenario depiction rather than scenario instance description, reuse is 

enhanced.  Scenario developers can search for scenarios containing, for example, specific 

types of aircraft against certain types of radar rather than an exact instance of this specific 

unit’s aircraft against this specific enemy radar located in this specific location.  The user 

can select the generic form of the scenario and then use attributes of the components in 

creating a specific instance that is subsequently executed on a simulation system.  The 

distinction is subtle, yet significant.  The scenario provides entities (players) in context of 

the scenario, yet allows them to remain in a flexible state until the scenario developer 
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assigns those aspects to the scenario to fit the specific simulation execution.  Tactics 

could, for example, be tested for effectiveness in different situations of terrain, enemy 

composition or weather, but still be the same basic scenario.  The user-selected attributes 

make the difference. 

3.2.2 Unified Visual Language 

The unification process of the visual language requires adapting the resulting 

languages and tools of previous research efforts into one coherent model.  Previous 

efforts have focused on specific subsets of scenario composition—structure of 

components, enforcing proper interfaces between components; or the behavior of 

components within a mission tasking.  This effort instead utilizes a single point 

description of the generic players of a scenario with the behaviors that these generic 

players will perform. 

Canli [5] initiated the visual language thread of research at AFIT with the focus 

on structure and proper interface between components.  He found in his research, listed 

by Paige, Ostrof and Brooke, nine fundamental design principles of visual languages that 

are applicable to any visual language, regardless of its purpose [14:12-17].  These 

principles are simplicity, uniqueness, consistency, seamlessness, reversibility, scalability, 

supportability, reliability and space economy.  Canli described these principles in part: 

Simplicity: … provides ease of learning, provides the ability to draw models by hand, and greater 
ease in creating software tools to support the language. 
Uniqueness: If a language has the uniqueness property, it provides one good way to express every 
concept.  This prevents ambiguities and redundant overlapping expressions in the models. 
Consistency: … of the language [i.e., the language must be consistent so that checks between 
views of a model may be reliably performed by mechanical means]. … [C]onsistency between 
models [e.g., within UML] might become an important issue for a designer dealing with large-
scale systems.  It is questionable whether a consistency check for UML can be automated. 



 

34 

Seamlessness: This principle helps the ability to generate code from [the] model.  It involves 
using the same abstractions in the model and in the textual language.  This avoids a logical 
“impedance mismatch.” 
Reversibility: The ability to generate a model from code contributes to the production of 
maintainable code and to the documentation. 
Scalability: The language should provide mechanisms to handle large-scale problems.  At the 
same time, these mechanisms should not detract from the design of small-scale models. … [T]he 
language should provide concise mechanisms to define the fundamental abstractions, ways to hide 
details and grouping mechanisms. 
Supportability: [The language] should be suitable for humans … [,] implementable and 
supportable by software tools. 
Reliability: … To ensure reliability of the design, the language should provide support for 
automatic consistency checks via the grammatical rules of the language. 
Space Economy: The models should take as little space on screen or page as possible to reduce 
distractions caused by search and browsing.  [5:64-65] 
 

Previous AFIT research on the visual language thread focused on these principles 

with varying levels of emphasis.  As the primary goal of this research is a unified visual 

scenario composition language potentially capable of creating scenarios usable by any 

simulation system with a global format transformation module, the main emphases are on 

simplicity, consistency and scalability without sacrificing the achievement of the other 

principles by included components from the body of prior work 

Bartley’s research focused on behavioral descriptions using nodes (representing 

tasks or activities) and transitions between these tasks.  In her discussion of required 

properties of a visual language, she described several essential properties for a viable 

visual language [2:70].  These include: (1) “the specification of attributes in the 

representation of activities … [so that] the user [is] able to specify certain attributes of the 

behaviors assigned to entities;” (2) ability of the user to place constraints on the 

transitions between tasks; (3) composition of new assignable activities from existing 

constituent activities to facilitate ease of use in assigning the same task to multiple 
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entities.  These properties, which she listed and implemented in her behavior description 

language (SBSD), are incorporated into the visual language tool of this research as well. 

Finally, while ADORA was not developed at AFIT, it provides a conceptual 

framework by which simulation entities, structurally and behaviorally, can be designed 

with a strong enforcement of context within the scenario.  Thus, the language and tool 

environment produced in this research incorporate the earlier languages and unify them 

into one coherent integrated model with an ADORA-based system as the consolidating 

component of the proposed visual language system.  Indeed, the ADORA approach makes 

the generic scenario description possible.  Note that ADORA is not implemented itself in 

this research nor is the ADORA toolkit utilized in the environment; instead the underlying 

concept and approach used by that system are used as a basis for this new system. 

3.3 Design Principles 

Since entities and behaviors/tasks can be modeled naturally in an object-oriented 

manner, an object-oriented approach is the logical one.  Scenario entities are objects; 

often composite or aggregate in essence; e.g., an aircraft with its constituent radar and 

weapons systems.  Tasks to be performed by the entities within the scenario can also be 

modeled as objects.  The object system would be the individual tasks to be performed by 

the entity in a sequence, with tasks potentially organized into conglomerate objects for 

ease of understanding or reuse by the scenario developer.  Transitions may be modeled as 

objects containing conditions that must be satisfied in order to properly sequence the next 

task object. 
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Additionally, entities and behaviors in the scenario are heavily dependent upon 

context—the associations and roles of components with respect to each other within a 

mission case.  Thus, the visual language was based on a modification of an object-

oriented model that emphasizes the objects in their context rather than primarily their 

commonality of structure.  This requirement was fulfilled by adapting ADORA 

methodologies and concepts to the language and tool. 

The adoption of an ADORA–like approach to entity modeling provides another 

important aspect of the unified visual modeling language: coherence.  The design 

language and tool supports a clear unity of views.  This is in contrast to the approach by 

UML, whose flexibility of disjoint diagrammatic views allows too much freedom of 

expression and can permit ambiguity or even contradiction that is not easily detected 

[5:51].  The unified visual language thus fulfills the principles of uniqueness and 

consistency, while retaining fidelity to the other language principles described in the 

previous section. 

Finally, the unified visual language leverages the accumulated knowledge of 

previous research.  Wherever possible, components of the language and the data store are 

adapted from those prior works.  This current research is thus of an evolutionary rather 

than revolutionary nature. 

The main design principles are, therefore, an object-oriented approach, focusing 

on a coherent model with supporting views, adopting results of earlier research into a 

new synergistic system. 
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3.4 Evaluation Criteria 

Bartley developed as a set of evaluation criteria the following, based on the 

criteria developed by Canli and other sources: 

Expressiveness: Were certain aspects or properties impossible to express?  If so, what?  Were 
some things difficult to express? 
Frequency of errors: What are the most common errors and the frequencies of those errors?  
Why did those errors occur?  How can they be avoided?  Where is the potential for errors? 
Redundancy: Was redundancy present in the models?  Is it possible to identify different types of 
redundancy?  How can redundancies be avoided?  Where did the redundancy occur? 
Locality of change: Do changes propagate through the models?  If so, what are the causes, and 
can they be avoided? 
Reusability: Do the models enable reusability? 
Reliability: Do the models enable consistency checks?  If not, why and how can the 
inconsistencies be avoided? 
Translatability: Are the models consistent and expressive enough to be used as an input to a 
simulation tool? 
Compatibility: What is the distribution of results of the above criteria? [2:75] 
 

These criteria are equally pertinent to this research as well.  Most of these criteria 

are binary—yes/no—rather than quantitative in nature.  Additionally, the test 

environment for this research was the OneSAF simulation tool using case studies.  An 

emphasis was placed particularly on the reusability aspect of the language and 

environment tool, although reliability (through grammar descriptions) and translatability 

are also strongly emphasized.  It is to be noted that the translatability is not proved 

through creation of input for an actual simulation system, but rather through a 

demonstration that the resultant output contains the necessary components and their 

relationships to each other in a format as to permit a mapping to a simulation-specific 

scenario file. 
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3.5 Summary 

Many of the foundational concepts were laid down ably by previous researchers at 

AFIT.  This work attempts to extend their efforts into a unified whole; specifically, the 

visual language and tool attempts to fuse these components into one consistent 

mechanism by which the different aspects (structure and behavior) can be used to 

develop generic scenarios which are stored in a searchable format.  These generic 

scenarios would then be processed by a transformation engine to produce artifacts that 

are executable on the intended target simulation software system. 
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IV.  Conceptual Design of the Visual Language 

4.1 Introduction 

The visual scenario language is implemented in three aspects that correspond to 

the research software tool’s three sections: abstract entity structure, entity behavior and 

concrete entity binding.  The abstract entity structure section describes the scenario in 

terms of players within a context of the other players in the scenario.  They are abstract 

in that they are not bound to an actual instance of an entity, allowing the scenario to be 

described generically.  The binding to actual simulation entities for an execution run is 

performed in the concrete entity section.  The mission tasking associated with each entity 

in the scenario is described in the entity behavior section. 

The language in this document is described primarily in terms of the 

implementation tool, but it is important to keep in mind that the language is meant to aid 

developers in composing scenarios in a generic sense.  The tool provides a convenient 

method of composing scenarios as well as a method of validating the concepts of a 

scenario.  A complete tool—one designed for actual field use rather than strictly 

research—would additionally have a translator that transforms the scenario into scripts 

usable by live simulation systems to execute simulation runs.  Nonetheless, scenario 

developers could benefit by utilizing the language to design their scenarios, because it 

enforces constraints which naturally are associated with interacting objects. 
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4.2 Abstract Entity Structure 

Abstract entities are the key to the generic nature of scenario composition in this 

language and tool.  An abstract entity represents a component that is a participant or 

player in a context within a scenario, but without the details that lock the entity—and by 

extension, the scenario—to a specific simulation instance.  An abstract entity is 

represented in the language as a rectangle containing its identifier and its type, separated 

with a colon.  An abstract entity symbol also includes a circle in the upper left corner to 

indicate the presence (or absence) of an associated behavior map.  Figure 13 depicts an 

abstract entity and an abstract entity set (defined later in this chapter).  An example of an 

abstract entity would be an aircraft assigned a bomb attack role in a generic scenario 

mission.  (To clarify misunderstanding of common terms, this document will use entity to 

refer to an abstract entity and either concrete entity or actual entity to refer to an entity 

with simulation-specific details required to create simulation execution scripts.) 

 

Figure 13.  Abstract entity (left) and abstract entity set (right) 
 

In comparing scenario composition to a software development effort, an abstract 

entity is conceptually closer to an abstract object than a class.  A class describes the 

structure of objects in an object-oriented system; it does not describe roles of different 

objects of the same class within a system.  In a similar way, scenario developers are not 
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interested solely in the structure of a specific class of aircraft (for example), but rather in 

the role that aircraft of a type are playing within that scenario.  Figure 14 demonstrates 

the difference between an abstract object-oriented approach and a class-oriented approach 

to viewing a software subsystem as modeled with ADORA.  Note that while the visual 

scenario language doesn’t use ADORA itself, it does use similar techniques to emphasize 

the context of the entity within the scenario.  But the example clearly demonstrates the 

differences between the two approaches. 

 

Figure 14.  Abstract object-oriented view versus class-oriented view [9:427] 
 

While the abstract entity approach aids in the understanding of roles played by the 

abstract entities within a system, the structure of those same entities is still extremely 

important.  The next section covers the description of abstract entity structure. 

4.2.1 Abstract Entity Attributes and Entity Types 

The entity in the visual language is abstract in that it does not have attributes in 

the sense that a concrete entity has attributes—values that determine the actual entity’s 

state at a given point in the simulation run.  This does not mean that the abstract entity 
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lacks attributes altogether.  It may have attributes that contain appropriate parameter 

types and constraints that are germane to a concrete entity performing the specific role in 

the scenario.  There typically are other attributes shared in common with all other entities 

of that type regardless of contextual role.  Such attributes, also in the form of constraints, 

are depicted in the form of an entity type, which are covered below.  In any case, the 

abstract entity’s attributes are not set to specific values.  They are described as value 

ranges, enumerations or other similar forms.  Of course, it is conceivable that a particular 

attribute may only have one value; in this case the constraint is an enumeration list 

containing only one item.  All entities must have an entity type, even if the entity type 

contains no attributes.  Proper entities (as opposed to reaction entities, defined in Section 

4.2.2) must also have an identifier. 

The entity type is analogous to a class in an object-oriented system.  Entity types 

also have attributes, as mentioned above.  As these are abstract entity types, the attributes 

are also in terms of constraints and not an actual state of a concrete entity of the specified 

type.  Just as classes in an object-oriented software system have mechanisms to support 

inheritance, entity subtypes may be defined from parent types.  A subtype inherits all of 

the attributes/constraints of the parent type.  Unlike the class, however, a type only lists 

those attributes and constraints that are common to all entities of that type; there are no 

methods in the entity type, as these are entities within a simulation scenario and not 

software development artifacts.  Entity types are not modeled visually using abstract 

objects; they are more naturally represented by a modification of the UML class notation; 

i.e., with the limitations mentioned. 
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As indicated earlier, those attributes that are closely bound to the role of an entity 

rather than the entity as a whole are defined in the abstract entity itself.  However, an 

attribute that is common to all entities of the type may require more narrowly defined 

constraints for a given entity by the role the entity is in; in this case the attribute would be 

duplicated in the entity’s attributes with the narrower constraints.  This is roughly 

analogous to polymorphism. 

It is common within scenarios for entities to be described in a collective or 

aggregate form as well as singleton entities.  An aggregate would consist of entities of the 

same type and the same mission, allowing the simulation system to deal with the 

aggregate as a single item rather than as several separate entities.  As the simulator would 

“move” the aggregate as one, the visual language should allow a representation of this 

aggregate entity of the same type as the individual entity to simplify assigning constraints 

and mission behavior tasks.  This is discussed next. 

4.2.2 Abstract Entity and Abstract Entity Set 

Abstract entities are divided into two varieties: the abstract entity proper and the 

abstract entity set.  The sole difference between the two is that the abstract entity set has 

a user-defined cardinality.  Figure 13 shows the graphical representation of the abstract 

entity set juxtaposed with the abstract entity.  The cardinality is in the lower left corner of 

the entity set.  The “multi-page” appearance is another visual cue to the user of the entity 

set.  The default cardinality of an abstract entity set is “0..*” which is interpreted in the 

same manner as UML: minimum zero, maximum some arbitrary value; i.e., “zero or 
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more” entities.  An abstract entity set with cardinality “1..1” is exactly equivalent to a 

proper abstract entity. 

Allowing this alternate form—the equivalence of an entity set with cardinality of 

1..1 and an abstract entity of the same type, behavior and constraints—technically 

violates the principle of uniqueness by having a redundant form of expressing a single 

entity.  Nevertheless, it is a reasonable compromise in that it allows the scenario 

developer flexibility to change the cardinality of the entity set while the scenario is under 

development. 

Because of the close relation between the two types of abstract entities, the visual 

language tool provides a means of converting entities from one form to the other.  

Converting an abstract entity to an abstract entity set changes not only the appearance of 

the modeled entity, but adds the cardinality attribute.  By default, cardinality is 0..* which 

may be changed just as the case of normally created abstract entity sets.  Converting an 

entity set to an entity causes the cardinality to be lost as a distinct attribute; naturally, the 

inherent nature of the entity is that it is of cardinality 1..1.  But the developer must have 

this capability in order to select the appropriate entity form once it is determined which 

best fulfills the scenario design. 

A significant benefit provided by the conversion capability is the added flexibility 

to reuse scenarios.  If an existing scenario needs to produce another simulation run but 

with a different number of players within a given role, the entity-entity set conversion 

allows such an adaptation to be easily made.  This is possible by keeping in mind that all 

abstract entities represented by an abstract entity set share the same attribute constraints 
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and mission tasks.  In other words, the association of entities represented by an entity set 

is that of role as well as type. 

There is an additional case of entity: the reaction entity.  This is an entity that 

does not have a role itself within the scenario.  It is strictly for the purpose of creating 

reaction transitions, described in Section 4.2.4.  A reaction entity is distinguished from an 

entity by having a blank identifier.  A reaction entity must have an entity type.  A 

reaction entity may not have a behavior assigned to it nor be part of nested components. 

4.2.3 Nested Abstract Entities 

Abstract entities and entity sets (but not reaction entities) may be nested within 

each other.  This corresponds to aggregation.  Nested entities are components of the 

entity in which they are contained.  For example, an aircraft entity may contain a radar 

system, a complement of air-to-air missiles, a complement of air-to-surface missiles and a 

Vulcan rotary machine gun (see Figure 15).  The containing entity has by default a 

communication link to its nested components, so that commands may be sent from the 

aggregate entity to the subcomponent entity (e.g., command to air-to-air missile to fire) 

and information flows from the subcomponent to the aggregate entity (e.g., radar detects 

aircraft at bearing X, range Y).  Communication links are covered in greater detail in the 

next section. 

As entities or entity sets in the scenario grow in complexity due to nested 

aggregation, it may become desirable to remove from view some of the details of the 

system.  The visual language tool provides a means to perform this essential task of 

information hiding.  Figure 15 shows on the left hand side the same entity but in “hide 
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details” mode.  The entity with details hidden informs the user of this situation by 

displaying an ellipsis after the entity identifier (i.e., entity name: entity type).  The visual 

language tool additionally shades the entity gray to call attention to the “hide details” 

state, but it is not a requirement of the language proper to use color. 

 

Figure 15.  Nested abstract entities 
 

The tool provides two ways to accomplish the hide/show details functionality: one 

is to double click the abstract entity or entity set that the user desires to change the 

display details state; the other is to click the hide/show button on the entity panel toolbar 

with the entity in the selected state.  If an entity doesn’t contain nested components, the 

hide/show details command is ignored.  Details at any level within nested components 

may be hidden or shown at the respective level.  If, for example, an entity (referred for 

illustration’s sake as the base-level entity) contains an entity (referred to as level-one 

entity) which itself contains an entity set (referred to as level-two entity set).  The user 

may hide the details of the level-one entity; i.e., hide level-two entity set.  Later the user 

may hide the details of the base-level entity.  If the user later shows the details of the 

base-level entity, level-one entity is still in a “hide details” state. 
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The ability to indicate hidden details is also useful for developers drawing entities 

by hand using the language notation: if details are known to exist, but are either 

uninteresting at this point or are as yet undefined, the developer can draw the ellipsis to 

indicate the presence of hidden details of the entity. 

4.2.4 Transitions and Abstract Entities 

The abstract entity diagram allows two types of transitions: communication 

transitions and reaction transitions.  The former is based on an extension of the nested 

entity concept.  An entity has access to its nested entity components.  The communication 

transition provides a way for entities that are not nested with respect to each other to send 

and receive messages.  Reaction entities may not have communication links. 

Figure 16 shows the example of an aircraft containing missiles that use the 

aircraft’s radar system for targeting.  The radar is not part of the missile system, but the 

missile must be able to receive targeting messages from the radar. 

 

Figure 16.  Communication and Reaction Transitions between Entities 
 

If a conditional transition of any type (described in greater detail in Section 4.3.2) 

refers to a communication message as part of the conditional test, then for the test to be 
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checked there must be a communication line between the entity and the source of the 

message; otherwise the condition will never be triggered.  As referred earlier, a nested 

entity inherently has a communication line with its enclosing entity; however, two 

entities that are both contained within the same enclosing entity (i.e., sibling entities) do 

not automatically have a link. 

The reaction transition indicates that the entity represented by the source of the 

transition will react at the detected presence of the entity represented by the destination of 

the transition.  Typically this is a reaction entity, which means that the entity will react as 

described to the detected presence of any entity of the type represented by the reaction 

entity.  If the destination is an abstract entity of entity set (i.e., not a reaction entity), then 

the entity will only react to an entity in the role specified by the abstract entity; this is an 

unusual case. 

The reaction behaviors may be defined in the behavior map associated with the 

reaction transition, indicated by the circle in the center of the reaction transition.  These 

behaviors may in turn be referenced in the mission behavior map of the entity.  Reaction 

behaviors defined in this map are not automatically executed; they must be selected from 

within the entity’s mission behavior map.  This allows the scenario developer to consider 

these contingencies in their context, much as a planner may create a contingency 

checklist for use in an actual event. 

4.2.5 Abstract Entities and Behavior Maps 

While the reaction transition of the abstract entity diagram may have associated 

behaviors defined within it, the abstract entity itself logically has an associated behavior 
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or mission tasking.  The behavior diagram language used in both cases is described in the 

next section. 

The behavior of an abstract entity or entity set may be an empty or undefined 

description.  When an entity is created, it does not have an associated mission tasking 

defined for it until one is created for it.  The entity may be left with the behavior map in 

an empty state.  If a run-time simulation scenario is generated for such an entity, the 

behavior is interpreted as “the entity will remain idle” throughout the execution of the 

scenario in the simulation run. 

The visual language tool checks for syntax errors in the behavior map and 

provides an “at-a-glance” indicator as to the status of a given entity’s behavior tasks: the 

circle in the upper right corner of the entity or entity set (see Figure 17).  If the behavior 

is undefined, the circle is blank.  If syntax errors exist, the circle is colored red with an 

exclamation point in the center.  If the behavior is defined and the system detects no 

syntax errors, the circle is colored green with a plus sign in the center.  If an entity is 

strictly an entity type (i.e., it has no role as a distinct entity in the scenario), then the 

circle is colored yellow with an “x” in the center.  Syntax errors are covered in the entity 

behavior language section. 

 

Figure 17.  Behavior Map Status of Abstract Entities 
 



 

50 

4.3 Entity Behavior 

Entity behaviors are defined using a slightly modified form of Bartley’s Scenario-

Based Specification Diagram (SBSD) language.  A brief description of this behavior 

language is provided in Section 2.3.2.  This section provides a more detailed view on 

SBSD as it is implemented in this visual scenario language.  The complete specification 

of the language as developed by Bartley, including an analysis of its effectiveness with 

other behavior mapping techniques, is defined in [2:77-97]. 

4.3.1 Nodes 

The nodes in the SBSD language correspond to tasks performed by the entities 

within the scenario.  The two user created types of nodes are atomic nodes and multitask 

nodes.  Atomic nodes represent the basic task element performed by the entity—the task 

cannot be divided into lower levels of subtasks; hence, the term atomic node.  As Bartley 

emphasized in her work, this doesn’t mean that an atomic node is necessarily a simple 

tasking; it may be quite complex and involve many subtask threads.  Nevertheless, the 

atomic node is the lowest level task that a scenario developer may refer to in creating a 

scenario [2:80]. 

Additionally, there exists one more type of node, the start node.  These nodes are 

not created by the developer and are strictly to mark the first task in a behavior sequence; 

the sequence may be a multitask node or the assigned behavior map. 

All nodes, except the start nodes, must have at least one transition into them.  The 

visual language tool considers the existence of unreachable nodes within a behavior 

sequence to be a syntax error. 
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4.3.1.1  Multitask Nodes 

Multitask nodes are sequentially processed tasks contained in one task unit.  

Multitask nodes are intended to increase abstraction by hiding unnecessary detail from 

scenario developers once they are defined.  Multitask nodes also provides a means of 

reuse: once common tasks are placed in an execution order, they may be referred to by 

the multitask name in other entity behavior maps [2:82].  Figure 5 in Section 2.3.2 

provides an example of a multitask node in both condensed and expanded states. 

A multitask node has only one exiting transition.  This may be either a regular 

transition or it may be implied by a temporary reaction transition; i.e., upon completion 

of the multitask sequence, the task that was the original source upon execution of the 

reaction is resumed.  Multitask nodes may contain regular or conditional transitions 

between task nodes within the multitask node.  If alternate task sequence branches exist 

within a multitask node due to conditional transitions, then the exit transition path of the 

multitask node is traversed upon completion of any taken branch within the multitask 

node; i.e., there is an implied “end” task that all branches within the node ultimately 

transition to after the branch tasks have been performed in sequence.  A more detailed 

discussion of transitions is given below. 

The multitask node is therefore a container to conveniently hold the subsequence 

of tasks and not an executable task in itself.  It provides another method by which the 

language promotes scalability via information hiding.  Once the developer has defined 

the sequence of tasks along with the corresponding transitions within the multitask node, 

the details of the sequence can be hidden by “condensing” the multitask node and 
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referring to it in the condensed form.  As in the case of hiding details of complex abstract 

entities, the tool provides two ways to accomplish the condensation/expansion: one is to 

double click the multitask node; the other is to click the hide/unhide button on the 

behavior panel toolbar with the multitask node in the selected state. 

A multitask node must contain at least one task node in addition to the start node.  

The visual language tool considers the case of a multitask node containing no task nodes 

to be a syntax error.  There is an exception to this: the reaction pseudo-task described in 

Section 4.3.2.2.  This is permitted because the task is not really undefined; the definition 

is associated with the abstract entity reaction transition. 

The visual scenario language modifies the original description of Bartley’s 

multitask node in adding an explicit start node.  This modification provides a consistency 

of the mapped behavior within the multitask node with respect to the top level behavior 

map.  In fact, a complete mission behavior for an entity may be reused as a multitask 

node in the mission of another compatible entity, provided that there are no reaction 

transitions in the original behavior map.  Allowing reaction transitions within multitask 

nodes were considered, but rejected due to the requirement of permanent reactions not 

resuming the original task upon completion of the reaction task sequence.  This would 

violate the requirement of all branches in a multitask node ultimately traversing the exit 

transition path; i.e., resume the original task.  The temporary reaction would not violate 

this rule; however, then the language would violate the principles of simplicity and 

consistency.  The scenario developer would have to remember that temporary and 

permanent reactions are allowed—or not—in similar cases.  Since the notation and the 



 

53 

concept between the two reaction types are so strongly linked, it was judged better to 

treat the two reactions in the same way with respect to reuse of scenario behaviors as 

multitasks in other entities’ behavior maps, to conform to the principles of consistency 

and simplicity. 

4.3.1.2  Nodes and Attributes 

As indicated earlier, atomic nodes may also have attributes.  These attributes are 

the parameters that the modeled entity requires upon entry to the task in order to perform 

the task within the context of the mission.  The parameters should fall within any 

specified constraints as applicable. 

Nodes in the visual language tool vary slightly from Bartley’s notation in that a 

count of the number of attributes associated with the atomic node is displayed in the 

center of the node, as shown in Figure 18 (nodes Air launch, Approach and Assault).  

This provides the developer a visual cue that the atomic node has attributes associated 

with it—parameters that require specific values upon entry to the task during a live 

simulation run from the scenario. 

 

Figure 18.  Atomic and Multitask Nodes 
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Multitask nodes do not have attributes due to their nature as “macro-nodes.”  

Multitask nodes do not actually describe a discrete task event, but rather group these 

events into a sequence.  If a task contained within the multitask node requires parameters, 

that atomic task within the multitask provides the proper location to define the attribute 

parameters; in Figure 18, Ingress and Egress are multitask nodes, in expanded and 

condensed states, respectively.  Any or all atomic nodes within a multitask node may 

have parameters, at the discretion of the scenario developer. 

4.3.2 Transitions 

Transitions are used in the Scenario-Based Specification Diagram to indicate the 

next task an entity is to perform within its assigned mission in the scenario.  There are 

four types of transitions: regular and conditional transitions, and permanent and 

temporary reactions.  A regular transition is the base form and indicates which task is to 

be performed in the sequence upon completion of the current task.  As a consequence, a 

node may have at most one regular transition leaving the node, although there may be 

several conditional transitions leaving the node.  (There is an exception to this when 

temporary reactions are involved; the exception is described in the reaction transition 

section below.)  Furthermore, cycles are not permitted due to the task frame nature of the 

behaviors.  Thus, a task node may have only one transition entering it. 

4.3.2.1  Conditional Transitions 

While a given node may be the source of at most one regular transition, it may 

have several conditional transitions leaving it.  Each conditional transition has an 
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associated condition, a mandatory element, which must evaluate to true for the transition 

to be traversed; i.e., the condition is essentially a guard condition.  The condition may be 

simple or compound; i.e., AND/OR operators chaining simple condition clauses.  While 

Bartley left the issue of primacy of conditional transitions undefined (due to the nature of 

OneSAF, which does not provide a means of identifying primacy), this language modifies 

the definition to provide the developer the means to create the order that the conditions 

are to be evaluated, provided that the simulation system allows this capability.  The first 

condition that is satisfied in the evaluation order has its transition traversed.  Figure 19 

shows a few conditional transitions leaving a node (Task One).  The conditional 

transition may be identified by name (if provided one by the developer; e.g., transitions 

ConditionTwo and ConditionFour) or by condition if not (e.g., condition transition to 

node Task Three), preceded by the evaluation order. 

 

Figure 19.  Conditional Transition between two Atomic Nodes 
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The conditional transition has two subtypes besides the basic form: the two 

reaction transitions.  These are covered next. 

4.3.2.2. Reaction Transitions 

Reaction transitions are a variation of conditional transitions.  They respond to 

external events that are not part of the original mission plan and are analogous to 

contingency tasks.  There are two types of reaction transitions, permanent and temporary 

reactions.  Figure 20 provides an example of the reaction transitions (EventOne is a 

permanent reaction, EventTwo a temporary reaction). 

 

Figure 20.  Permanent and Temporary Reactions 
 

Permanent reactions interrupt the normal processing of the task sequence and due 

to the nature of the contingency, the original task sequence is abandoned and the 

contingency task sequence executed.  As indicated in Section 4.3.1.1, this requirement 

means that it may only be created in the top-level of the behavior map; i.e., it may not be 
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created inside multitask nodes, as all task sequence branches within a multitask node 

ultimately resume with the task succeeding the multitask node. 

Temporary reactions also interrupt the normal processing of the task sequence, 

but upon completion of the contingency tasks, the original interrupted task is resumed.  

As a consequence, the temporary reaction performs the function of the regular transition 

with respect to the reaction task; i.e., when the reaction task is completed, the interrupted 

task is the next task in the sequence to be executed.  Thus, the destination node of a 

temporary reaction may not have a regular transition originating from it.  A variation 

from Bartley’s notation of the temporary reaction emphasizes this by indicating the 

source (interrupted) node with a “hollow” arrowhead rather than identical solid-fill 

arrowheads on both ends of the transition.  Like permanent reactions, temporary reactions 

may not be created inside multitask nodes; this is strictly to comply with the principles of 

simplicity and consistency. 

The destination node of either type of reaction may be a pseudo task: the 

destination refers to a sequence defined in the behavior map of the reaction transition of 

the abstract entity diagram as alluded to in Section 4.2.4.  Such reaction destination nodes 

are defined by the label “DO [reaction entity identifier:type],” where the identifier and 

type are of the destination entity of the reaction transition in the abstract entity diagram; 

e.g., the destination multitask node of reaction EventTwo in Figure 20.  The identifier 

may be omitted if the destination of the transition in the abstract entity diagram is a 

reaction entity and therefore has no identifier; e.g., the destination multitask node of 

reaction EventOne.  Additionally, the reaction transition itself, like all other conditional 
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transitions, requires a triggering condition.  If the reaction is based on the presence of the 

reaction entity, then the condition may be set to “REACT [reaction entity 

identifier:type]” rather than manually defined.  If the reaction behavior defined in the 

reaction entity has multiple paths, then parameters should be set in the entity’s task node 

to determine the proper path. 

While not strictly dictated by the language, by convention the target node of a 

reaction transition should be a multitask node, even if the desired reaction behavior 

consists of only one atomic task.  In this manner contingency activities can easily be 

abstracted.  The destination nodes of the reaction transitions in Figure 20 follow this 

convention. 

4.4 Concrete Entity Binding 

The abstract entities defined in the abstract entity section must be bound to 

specific entity values for a scenario to be adapted for a specific situation.  This allows the 

generic scenario to be converted to a form closer to a usable one for a simulation system 

for an execution run. 

All concrete entities must correspond to a defined abstract entity or entity set.  In 

this manner, the entity receives its behavior descriptions.  The concrete entity additionally 

is given the specific simulation run parameter values.  These values must conform to the 

constraints as provided in the abstract entity section. 

The scenario developer would select an abstract entity to transform into a concrete 

entity.  The user may provide the concrete entity with a unique identifier or the system 

can generate one automatically.  Note that this identifier is not necessarily the same as the 



 

59 

identifier of the abstract entity; in the latter, the entity within its role is stressed rather 

than the actual entity modeled in concrete form.  The system then displays the list of 

attributes associated with the entity for the developer to select the appropriate value for 

the scenario.  The value must satisfy the relevant constraints as defined in Section 4.2.1.  

These values make up the initial parameters of the entity in the scenario.  Additionally, 

abstract entity sets must have a value for the quantity of concrete entities in the scenario.  

For example, if an abstract entity set has a cardinality of 0..4, the user must specify 

whether there are 0, 1, 2, 3 or 4 concrete entities in the scenario.  The user may set the 

other parameters of the entities created from the abstract entity set individually or as a 

block. 

Once the entities involved have all been represented with concrete entities, the 

tool would then allow the user to save the instantiated scenario in a file.  This file would 

be processed by a translator program which converts it into a simulation-specific scenario 

input file.  Due to time and resource constraints, the translation programs have not been 

created. 

4.5 Summary 

The visual scenario language and tool allow the scenario developer the ability to 

design a scenario with players—entities that are participants in the scenario—and player 

mission behavior foremost in mind.  By creating scenarios using the abstract entity and 

its extension, the abstract entity set, the developer can focus on roles as well as structure. 

Adopting the Scenario-Based Specification Diagram (SBSD) language as the 

description of entity mission behavior takes advantage of the results of previous research 
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done at AFIT.  The SBSD has an easy to understand and use syntax that makes it ideal to 

describe behaviors within a scenario. 

Finally, the concrete entity binding methodology allows the creation of entities for 

use within a scenario, fully parameterized.  Translator programs would map the 

instantiated scenario into a simulation system specific form. 

The next chapter describes the specific implementation of the tool as well as 

results from using the language and tool in composing scenarios. 
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V.  Implementation and Use Cases of the Visual Language 

5.1 Introduction 

The language described in Chapter 4 was implemented into a software tool using 

the Java programming language.  The visual language tool provides a graphical user 

interface (GUI) that allows users to construct the entities participating in a scenario 

beginning with an abstract form along with their associated behaviors in the Scenario-

Based Specification Diagram (SBSD) language.  This chapter covers the details of the 

implementation program in both of its aspects: the GUI and the data storage and retrieval 

component.  The chapter also demonstrates some example scenarios generated from the 

language using the tool and how they map to a conceptual scenario form focusing on 

items of interest to a scenario developer. 

5.2 Implementation of the Visual Language Tool 

The Defense Modeling and Simulation Office (DMSO) held a meeting in May 

2003 where five shortfalls in the realm of simulation systems were identified.  The 

second shortfall is described as: 

The relationships between verb/task oriented operational views and noun/entity oriented system 
views are undefined in  DoD Framework, in Unified Modeling Language, and are implicit tribal 
knowledge in the Military Decision Making Process.  Framework should define the regular 
expression grammar for specifying these relationships.  (Unambiguously machine parsability 
issue) [Personal correspondence from DMSO, May 2003] 
 

The complete text of the memo is provided in Appendix A. 

The visual language is an attempt to explore possible solution spaces for this 

problem.  The tool implements the language and adds visual presentation aspects to it.  
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The scenario language itself, without the presentation component, can be readily defined 

in Backus-Naur Form; the rules of production are listed in Appendix B, Tables 1 through 

3.  The BNF parsing rules also provide a guide to the development of the storage and 

retrieval of the abstract scenarios produced by the tool.  Details of the data storage 

component are provided in Section 5.2.2. 

Figure 21 shows a partial UML class diagram of the GUI portion of the language 

tool.  In order to allow the reader to see the basic structure of the classes and their 

associations, several details have been omitted from the diagram.  Only a few key 

attributes of some classes are shown; all methods are hidden from view.  Many 

associations are also hidden. 

 

Figure 21.  UML Class Diagram of the Visual Tool Program GUI Component 
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The class that provides the “glue” upon which the program’s GUI hangs together 

is the VisualScenarioLanguageFrame class, shown centered at the top of Figure 21.  All 

of the GUI support class instances are initialized in this class: the menu, tool bars, 

drawing panels and inspector panels.  Figure 22 shows a screenshot of the tool running. 

 

Figure 22.  Visual Scenario Language Tool Screenshot 
 

5.2.1 Graphical User Interface Component 

The software tool, when running, is divided into various panels to provide the 

scenario designer access to components of interest.  The tool has conventional 
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Windows™ components—the menu bar and traditional toolbar—as well as application-

specific panels.  The remainder of the discussion will focus on these panels. 

Items 1, 2 and 3 in Figure 22 describe the entity-centric view.  Item 1 is the 

inspector panel of the selected entity component; in this view, the selected entity is the 

abstract entity set InterdictForce.  The inspector panel provides the fields for the user to 

enter relevant data with respect to the selected component. 

Item 2 is the Abstract Structure View’s toolbar.  Using the buttons on this toolbar, 

the user may (from left to right): clear the scenario; select a component; hide/show details 

of the selected component; delete the selected component; copy the selected entity-type 

component; paste a clone of the copied entity-type component; create an abstract entity; 

create an abstract entity set; create a communication link; create a reaction transition; 

convert the selected entity set to an entity; and convert the selected entity to an entity set. 

Item 3 is the display panel for the Abstract Structure View.  As shown in the 

figure, the entities and transitions are shown and manipulated in this panel.  The 

components in this panel conform to the descriptions in Section 4.2.  Additionally, to 

distinguish the currently selected component from the others in the panel, corner 

“handles” and color are used.  The selected entity/entity set is cyan with a blue outline; 

the four blue handles are in the entity’s corners.  In the case of a selected transition 

(reaction or communication link), the transition is blue with blue handles defining the 

“click-selectable” area of the transition. 
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The Treemap View (the first unselected tab in Item 3) is where the 

“concretization” of the abstract scenario takes place.  The Entity Type View (the second 

unselected tab) is the entity type editor pane, covered in greater detail in Section 5.2.1.1. 

Items 4, 5 and 6 describe the behavior-centric view of the selected entity view 

component.  If there is no selected component or the selected component cannot have a 

behavior (i.e., communication link or reaction-only entity, such as MIG29 in the figure), 

the panels involved here are inactive. 

Item 4 is the inspector panel for the behavior.  Like the inspector panel for the 

abstract entity, it is used to allow the scenario developer to view and update data with 

respect to the selected behavior component. 

Item 5 is the behavior toolbar.  These options are: clear the behavior panel 

(effectively removing the behavior tasking from the selected entity); select behavior 

component; hide/show the details of the selected multitask component; delete the selected 

behavior component (task or transition); create an atomic task node; create a multitask 

node; create a regular transition; create a conditional transition; create a permanent 

reaction transition; create a temporary reaction transition; select behavior full view; select 

behavior small view; select behavior fisheye view.  These last three merit some 

discussion.  The full view is displayed in Figure 22.  In it the components are “full sized” 

with the details viewable.  It is possible to create a large behavior task for an entity and in 

this case it may be impossible to view the entire behavior map.  The small view collapses 

the size of the components to allow the developer an overview of the entire behavior 

map.  However, the labels are not displayed in the small view.  The fisheye view is a 
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compromise where those items not under the mouse cursor are in a small view while the 

task items under the cursor are in full view.  Task items immediately connected to the full 

size task node are also full size.  Unfortunately, this feature was not completely 

implemented due to time constraints, and the option is disabled. 

Item 6 is the display panel for the behavior map.  It consists of two panels 

supporting two views.  One is the Defined Behaviors View panel; this panel is where the 

permitted atomic tasks of an entity type are defined.  The other is the Behavior Map View 

panel (displayed in the figure); the components in this panel conform to the descriptions 

given in Section 4.3.  Like the entity panel, there is an extension to highlight for the 

developer the selected component: blue outline with blue corner handles; the task “Return 

to Base” is the selected component in the figure. 

In defining a scenario, the developer must first consider what entities are 

involved.  These entities are of certain types and would have behavior characteristics and 

constraints by nature of their type.  The next section covers the entity type and its 

associated editor within the tool. 

5.2.1.1 Creating Entity Types and Subtypes 

The purpose of the entity type is to provide the scenario developer a ready-made 

set of attributes (modifiable parameters) and associated constraints from which scenario 

entities may be created; i.e., the entity type provides a means of describing the 

capabilities of an entity of the specified type.  Additionally, as entities may react 

generally to other entities of a certain type, the type provides a mechanism to identify 

entities by type such that appropriate reaction behaviors can be readily defined. 
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Entity types naturally lend themselves to a hierarchical classification of greater 

specialization; thus, a means to capture and reuse these attributes would greatly simplify 

the work of the scenario developer.  For a detailed discussion on the concept of entity 

types, refer to Section 4.2.1. 

In order to support the form of inheritance with respect to entity types, the tool 

provides an entity type editor as part of the scenario structure pane, selected with the 

EntityType View tab.  Figure 23 shows the entity type editor in the active window pane. 

 

Figure 23.  Entity Type editor panel in VSL tool 
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The editor is based on the notation of the Unified Modeling Language (UML) as 

determined in Section 4.2.1.  The entity types are represented by the boxes, with an entity 

type name in the upper portion of the box.  The lower portion indicates the number of 

attributes that the entity type is directly responsible for introducing into the inheritance 

chain; i.e., it does not reflect the number of attributes that it inherits from its supertype 

and higher levels of abstraction or generalization. 

The arrows represent the immediate generalization of the entity type.  The 

arrowhead is associated with the generalized, or parent, entity type.  An entity type may 

have only one immediate supertype.  Entity types without a supertype are considered 

base entity types.  The inheritance chain may not have cycles; i.e., an entity type may not 

be its own ancestor irrespective of the number of intervening generations.  Allowing such 

a structure would defeat the purpose of inheritance: in a cycle, it would be impossible to 

determine which entity type is the supertype and which the subtype.  Indeed, in a cycle all 

types are supertypes and all types are subtypes.  The inheritance chain would take on an 

M. C. Escher-like surreal quality. 

Attributes can be added or removed from the subtypes through the inspector panel 

on the left side of the entity type pane.  The attributes in the entity type represent the 

variables with associated constraints that apply to an instance of the entity type; i.e., an 

entity of the entity type in a simulation scenario would potentially have as parameters the 

attributes whose values must comply with the constraints contained within the attribute.  

Removing an attribute from an entity type’s inherited attribute list is equivalent to stating 

that the attribute in question is not applicable to an entity of the subtype.  Attribute 
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removals are also inherited by subtypes: if a supertype, containing attribute A in its list, 

has a subtype which has A removed from its list, then subtypes of that subtype do not 

inherit attribute A. 

Constraints may also be added or removed from any given attribute within a 

subtype.  Subtypes derived from the changed entity type also inherit these changes.  For 

example, an entity type contains an attribute B with a list of values as the set of 

constraints for any assigned value for that attribute.  A subtype is subsequently created 

from that type; the subtype inherits attribute B with the constraints.  The user may change 

the constraints in the subtype’s copy of attribute B without affecting the supertype’s copy 

of the attribute.  Any subtype derived from this subtype will reflect the changed version 

of constraints for attribute B. 

Entity types may be deleted if they to not have dependent subtypes.  There is one 

exception to this rule: if an entity type does not alter in any way its inheritance chain (i.e., 

it does not delete or alter any inherited attribute, nor add any new attribute), then it may 

be deleted and the dependent subtypes will be associated with the now-deleted entity 

type’s immediate supertype. 

The toolbar for the entity type editor provides (from left to right in Figure 23): 

clear the entity type panel, select an entity type in the panel, delete the selected entity 

type, create a new entity type, associate the inheritance link between the subtype (source) 

to the supertype (destination). 

As the developer creates entity types in the EntityType View panel, the developer 

may also create in the Defined Behaviors View panel those valid atomic behavior task 
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frames that an entity of the entity type may perform.  The tasks that the developer creates 

in this panel are the only atomic tasks that an entity of this entity type may perform.  

When the developer is creating the abstract scenario and in the process of assigning a 

behavior map to an abstract entity in the scenario, the tasks that are created as a part of 

the behavior map must be from the defined behaviors. 

Entity type diagrams may be saved to and loaded from disk file for later editing 

and reuse.  Multiple entity type diagrams may be created for different applications or 

different simulation systems as necessary.  In any case, once entity types are defined, the 

developer may proceed to creating entities and their behaviors within the scenario. 

5.2.1.2 Creating Entities 

Once the entity types are defined, the scenario developer may begin creating an 

abstract scenario.  As discussed in Section 4.2, the heart of a scenario is the set of entities 

playing specified roles.  The entity type prescribes the limits upon which an entity of the 

type may perform.  An entity operating in a specific role may have additional constraints 

beyond those inherent within the nature of the entity itself.  This is the purpose of the 

abstract entity: to define the additional constraints and behaviors of an entity playing a 

role within a scenario. 

The developer defines the abstract scenario within the Abstract Structure View 

panel of the tool.  First the entities playing roles in the scenario must be entered into the 

panel.  The developer does this by determining whether an abstract entity or entity set is 

the most appropriate for the role.  As discussed in Section 4.2.2, the only difference 

between the abstract entity and abstract entity set is that the set has cardinality in addition 
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to the normal entity features.  If the role is played by multiple instances of a type 

performing the same behavior, then the abstract entity set is the appropriate 

representation of the player. 

To create an abstract entity or entity set, the developer selects the corresponding 

button on the Abstract Structure View toolbar.  The developer then places the mouse 

cursor over the desired location of the entity on the display panel.  The developer clicks 

the left mouse button and the entity (or entity set) is created with its upper left corner at 

the mouse cursor.  If the point is inside another entity, the created entity becomes a 

subcomponent of that entity.  In this way nesting is accomplished, as defined in Section 

4.2.3.  The entity inspector panel is refreshed with the information of the newly created 

entity, allowing the developer to enter the appropriate data for the entity.  This data 

includes the identifier, the entity type and the cardinality, if the created entity is an entity 

set.  Additional constraints imposed by the role the entity is to perform in the scenario 

beyond those due to the nature of the entity (as defined in the entity type) are also entered 

in this panel. 

If no identifier is supplied, then the created entity is a reaction entity as described 

in Section 4.2.2.  The entity of type MIG29 in Figure 22 is a reaction entity.  Normal 

entities may have associated behavior, contain nested entities, have communication links 

with other entities, and may have reaction transitions to any type of entity (including 

reaction entities), but reaction entities may only be the destination of a reaction transition.  

The tool enforces these specifications. 
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5.2.1.3 Creating Entity Transitions 

The developer may define a communication link between non-reaction entities.  

Links are considered bidirectional channels by the language.  The output language 

description of the scenario has a “comm_link” clause for both entities referring to the 

other entity regardless of which is the source or destination of the transition.  Nested 

entities are assumed to have communication links up and down the nesting and are 

therefore not required—neither does the tool permit the developer to create an explicit 

link up or down the nesting hierarchy.  However, such links are not automatic for sibling 

entities; i.e., entities that are nested within the same entity but not nested to each other.  If 

a communication link between such entities is required by the scenario, the developer 

must explicitly create it using the Create Communication Link button in the Abstract 

Structure toolbar. 

Unlike communication links, reaction transitions are unidirectional.  The source 

entity must be a proper entity; i.e., not a reaction entity.  The destination entity may be 

either a proper entity or a reaction entity, although the typical case is a reaction entity; the 

reasons for this are discussed in Section 4.2.4.  Reaction entities may only be the 

destination of a reaction transition, never the source. 

For each non-reaction entity and reaction transition in the scenario, a behavior 

may be composed.  This is done in the Behavior panel and is the next topic. 

5.2.1.4 Creating Behaviors 

The purpose of a scenario is to describe the players and their behaviors in a 

manner that allows a simulation system to execute the scenario to provide outcome data 
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that ultimately aid commanders make decisions in real situations.  The purpose of a given 

simulation system may be training such that commanders will be better prepared to face 

these real situations.  The purpose of another system may be to provide a commander the 

probable results of a course of action.  But regardless of the purpose of a specific 

simulation system, the players in the scenario must execute some behavior.  The modeled 

players—or entities—must have the behavior defined so that they can perform within the 

running simulation.  This section describes how behaviors for entities in the abstract 

scenario system are created. 

The bottom panel of the tool is the behavior editor.  It consists of the inspector 

panel to the left, and the behavior map with the behavior toolbar to the right.  The 

developer determines the behavior of the currently selected proper entity, entity set or 

reaction transition.  The tool will not allow a behavior map to be created for reaction 

entities.  The developer places atomic nodes on the map by selecting the Create Atomic 

Node button and clicking on the behavior map panel at the desired location.  Atomic 

nodes represent the tasks the entity will potentially perform during the course of a 

simulation run.  The developer names these tasks and associates attributes, which are 

placeholders for setting parameter values upon entry to the task during the execution of 

the simulation.  Access to these variables is through the inspector panel which is context 

sensitive to the currently selected component in the behavior map. 

The developer may place multitask nodes on the behavior map in a similar 

manner using the Create Multitask Node button.  Multitask nodes do not represent tasks 

in and of themselves, but rather represent a “macro-task;” i.e., a behavior submap that can 
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be considered as a single task.  Multitask nodes do not have parameters associated with 

them directly, but the atomic nodes that may be placed in them do.  Both types of nodes 

are discussed in detail in Section 4.3.1. 

Once a set of nodes are placed on the behavior map, the developer creates 

transitions to the nodes.  The behavior map upon creation contains one start node, 

identified as a slightly smaller, green circle labeled “Start.”  In order for a task to be 

executed, there must be a path from the start node to the node representing the task.  The 

tool identifies those nodes that are not accessible to the start node by drawing them in 

red.  Cycles are not permitted in the behavior map; allowing them could conceivably lead 

to endless loops during the execution of the simulation.  This is enforced within the tool 

by not allowing a node to be the destination of more than one transition. 

The transitions are of the four types defined in Section 4.3.2.  The reaction-type 

transitions are only permitted at the highest level of the behavior map; i.e., they are not 

permitted in submaps within multitask nodes.  A node may be the source of multiple 

transitions, of which only one may be a regular transition.  The other transitions must be 

of a form of conditional transition with a guard condition.  The purpose is to allow a task 

to be prematurely exited if the guard condition evaluates to true; otherwise, upon normal 

completion of the task, the regular transition is traversed.  Like all other user entries, the 

data for transitions (sequence number, name, guard condition) are accessed through the 

inspector panel. 
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5.2.1.4 Reusing Abstract Entities and Behaviors 

The tool provides a means of reusing an entity within a scenario as another 

component with the same or slightly different behavior mission.  This is performed by the 

copy/paste entity buttons in the Abstract Structure View toolbar.  The entity produced is a 

clone of the original and the developer may modify the internal nested entity structure 

and associated behavior map without affecting the original entity’s structure or behavior. 

The cloned entities and behaviors are manipulated in the same manner as entities 

and behaviors created directly by the scenario developer. 

5.2.1.5 Converting the Abstract Scenario to Concrete Scenario 

Once an abstract scenario has been defined, a concrete scenario may be generated.  

This is performed in the TreemapView panel.  The panel automatically generates a 

treemap view from the abstract scenario upon entry to the panel.  The concrete scenario 

requires some specific detail that is not essential to the abstract form of the scenario; e.g., 

the specific number of entities represented by an entity set.  The concrete scenario 

automatically places an entity set “shell frame” around entities derived from the entity set 

with at least one entity as a placeholder; if the entity set’s cardinality has a minimum 

value greater than one, then that minimum number of entities will be generated in the 

shell automatically.  If the cardinality allows zero entities, then the developer may delete 

the one entity in the shell frame.  The developer also enters the starting parameter values 

of the entity attributes in this view panel. 

When the developer has resolved all of the detail issues, the concrete scenario 

may be saved to a disk file.  The software tool does not support reading concrete scenario 
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files at this time.  The output concrete scenario file would subsequently be used as input 

by a scenario translation program which maps the entities, behavior task frames and 

parameter values into a scenario file format compatible with the target simulation system.  

As discussed previously, a translation program was not developed as a part of this 

research due to time constraints. 

5.2.2 Storage and Retrieval of Data Components 

The tool stores the various artifacts of the system in several files for reuse.  The 

abstract scenario is saved in a VSL file which contains the involved entity definitions, 

links and reactions as well as their associated behaviors.  The entity type table is saved in 

a VST file.  The concretized scenario is saved in a VSC file. 

The advantage of this approach is that different entity type tables can be custom 

created to mirror the capabilities and expectation of specific simulation systems that are 

not completely compatible conceptually with each other.  However, for those systems 

that are conceptually congruent (i.e., the type of entities, the user-selectable attributes and 

permissible behaviors of the entity types are essentially the same between these 

compatible systems), this scenario development tool provides a framework for reusing 

scenarios in the different simulation systems.  The translation program could be designed 

to handle conversions of near types; e.g., if one system may use a floating point number 

for a given attribute where another system uses an integer then the translation program 

would have a conversion function to allow the scenario data to be transformed into a 

format compatible with the other’s format. 
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Another advantage of the structure is that it allows the use of XML for storage, 

search and retrieval.  It is possible to transform the abstract scenario and entity type files 

into XML and subsequently use modern XML tools to store the information into a 

database, leveraging advanced database systems’ capabilities for search and retrieval.  

The scenario language design was mapped to a parsable BNF notation to facilitate this 

transformation of the libraries of entities, types, tasks, attributes and scenarios from their 

native format into XML for use in other systems.  But at this point, the system provides a 

simple save and load capability to the abstract scenario file and the entity type library file. 

5.3 Example Abstract Scenario Design in the Language Tool 

The tool was used to create the simple scenario involving two commands: a 

Soviet opposing force and a US distinguished force.  The USSR force consisted of a 

MIG29 fixed wing aircraft and a Mi24 rotary wing aircraft.  The US force consisted of 

F14D and AH64A aircraft.  Figure 24 shows the scenario with the AH64A entity in 

focus.  Appendix C contains the abstract scenario VSL file to show the conversion from 

visual representation to a context free grammar. 

The simple scenario was selected for examination because it was provided by the 

OneSAF simulation system as an introductory scenario.  In this case, the scenario 

describes the planned mission.  The behavior map in the figure corresponds to the tasking 

for the US forces AH64A aircraft.  The tasks shown represent the task frames developed 

by the OneSAF team that are permissible for entities of the fixed-wing aircraft (FWA) 

and rotary-wing aircraft (RWA) entity types.  Each of these task frames contain 

individual tasks that are not directly manipulable by the user of the OneSAF system. 
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Figure 24.  Simple Scenario in VSL 
 

While this represents the minimal level of granularity for the simulation user, a 

scenario developer may require a greater degree of detail.  The Defined Behaviors View 

allows the scenario developer the ability to view these task frames in greater detail and to 

set the tasks within the task frame. 

An example of this detail is in the diagram shown in Figure 25.  The task frame of 

Figure 24 is expanded to show the detailed tasks within the Fly Route task frame.  It also 
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shows the reactions that are possible to an entity executing this task frame as part of its 

scenario in a simulation run. 

 

Figure 25.  Detailed View of Fly Route Task Frame 
 

The visual language and tool thus provide enough expressiveness to describe 

scenarios in an abstract form and yet provide some degree of detail.  With further 

development, it is possible to refine the tool to produce output directly useful to 

simulation systems; i.e., parsable in a format compatible with the simulation system. 

5.4 Summary 

The visual language provides a means of expressing scenarios in terms common 

to all simulation systems: entities (actors or players in the scenario) and behaviors those 

entities perform in the simulation.  The tool implements and enforces the constraints of 
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the visual language.  These constraints can be described using a context free grammar in 

Backus-Naur Form.  Additionally, the constraints of the simulation system whose 

scenario composition capabilities are modeled with the entity type library system are also 

enforced.  While subtle, this is a crucial value added element of this work. 

This language and tool thus provide a basic framework, when coupled with 

translation programs, by which scenarios can be composed by developers possessing 

knowledge of the problem domain, without necessarily having detailed knowledge of the 

esoteric features of the simulation system’s language.  The translation programs provide 

the mapping from the entities and behaviors described in the scenario to the form 

accepted by the simulation system.  While the translation was not accomplished with this 

research, it provides the next logical step in advancing the state of generic scenario 

composition to live simulation systems. 
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VI.  Conclusions and Recommendations 

6.1 Introduction 

The visual scenario language proposed in this thesis has potential to aid the rapid 

development of scenarios by problem domain experts.  With the entities and tasks 

constrained by the entity type dictionary, developers can assemble task frames and create 

complete scenario missions involving many entities.  The scenarios produced by the 

current version of the system are useful in conceptualizing scenarios, allowing scenario 

developers visualize how a scenario might be constructed for a live simulation system.  

Eventually, it may be possible to construct the live system scenarios directly using future 

versions of the tool. 

6.2 Conclusions of Research 

The visual language is simple, easy to learn and use.  It uses a basic notation that 

can be drawn by hand to sketch out a scenario concept, while the tool adds a constraint 

checking mechanism.  The visual language maps to a language described with a context 

free grammar that can be easily parsed, aiding constraint checking of the scenario.  These 

fulfill the criteria of reliability, translatability and reduced the frequency of errors; i.e., 

detected and displayed syntax errors.  The environmental provision of the entity type with 

its associated defined behavior description helped fulfill the criterion of reuse.  As all 

components of a scenario are defined (entity, behavior, constraints and parameters) and 

interrelated, the expressiveness of the language is adequate to describe scenarios in a 

near-simulation format. 
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The visual nature of the language allows the developer to see scenarios in a more 

intuitive form, abstracting away many of the details, but providing access to them 

through inspector panels.  This results in an increase in the understandability of the 

scenario, particularly for individuals not familiar with the syntax of scenario description 

languages of particular simulation systems. 

The visual language and tool are presently at a very basic point; more work is 

necessary to refine the language tool and adapt it for use with live simulation systems.  

The essential components are present: entities that operate within the scenario; the 

elements describing the behavior (tasks and transitions); and attributes of the entities 

(constraints on the entity inherent to its nature and additional constraints due to the 

requirements of the role the entity plays within the scenario).  What remains is mapping 

the components of the visual language from its textualized form to the format of a 

specific simulation system’s scenario file. 

6.3 Significance of Research 

This research demonstrates that a general-purpose visual language can express 

relations between entities and their behaviors in a way that allows the scenario developer 

to have a higher understanding of the scenario, seeing it in visual terms rather than in 

voluminous script files—typically the form in which scenarios are built and stored. 

Simulation systems are increasingly complex; scenarios are likewise growing in 

complexity.  The ability to abstract away much of the detail can only help developers 

maintain control over the increased complexity.  A graphical user interface additionally 

allows a user of the visual tool a rapid development approach to scenario construction.  
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The abstract nature of the language coupled with the GUI thus tends to not only aid 

understanding of complex scenarios, but also eventually promotes the ability of users to 

define scenarios without direct intimate knowledge of the simulation language format. 

6.4 Recommendations for Action 

For a proof-of-concept, at least one translation program to convert an output 

concrete scenario file into a compatible scenario file for use in a functional simulation 

system should be developed. Additionally, translation programs may be developed to 

load existing simulation systems’ scenario files to extract the entity types, associated 

behavior tasks and developer-accessible parameters into an entity type definition file.  In 

this way, existing scenarios can be leveraged to create a dictionary of “legal entity types” 

from which scenario composers can create abstract scenarios. 

A conversion utility should also be developed to convert the abstract scenario and 

the entity type library files to XML take advantage of database systems as alluded to in 

Section 5.2.2. 

6.5 Recommendations for Future Research 

It appears that the ADORA approach to software engineering has advantages that 

are applicable to engineering simulation scenarios.  The ADORA project is an on-going 

research effort at the University of Zurich; it is by no means a completed system or 

methodology.  As the state of research progresses, it has the potential to provide an 

improved means of modeling simulation scenarios.  Although ADORA was not itself 

directly adopted in this research, it may well progress to a point where it could directly 

apply to the simulation community as a general purpose modeling language.  It is 
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strongly recommended that developments in the ADORA project be kept in view while 

continuing improved means of describing, defining and implementing scenarios. 

Another area of research that would be beneficial is the use of visual languages in 

computer programming.  While this is a more pragmatic approach than theoretical—it 

tends to emphasize a product that may by its nature be limited to a particular simulation 

system—it still would offer benefits to the simulation community.  Developing 

operational scenarios quickly and easily while controlling the complexity by a Visual 

Simulation for Windows language would likely be a welcome addition to the simulation 

and modeling community. 

6.6 Summary 

As it follows up on past efforts, this work represents the completion of one phase 

of research in this arena.  It also marks the beginning of the next phase: more work will 

need to be done in order to produce tools that can aid scenario developers rapidly create 

scenarios for simulation systems to meet the demand for high-quality simulations for new 

tactics, training and analysis.  The visual language provides one more element towards 

achieving that goal. 
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Appendix A 

 

Figure 26.  Personal correspondence from the Defense Modeling and Simulation 
Office (DSMO), May 2003 
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Appendix B 

Table 2. Visual Language in BNF (basic definitions) 
<scenario> ::= scenario [name <identifier>] "(" <entity_clause> {<entity_clause>} ")" 

<attribute_constraint_clause> ::= attribute "(" <identifier> type """<type>""" 
    "(" constraint """<constraint>""" {constraint """<constraint>"""} ")" ")" 

<attribute_list> ::= attribute_list "(" <attribute_constraint_clause> {<attribute_constraint_clause>} ")" 

<boolean_expression> ::= *** 
 Note: this is a placeholder for conventional Boolean expressions rather than an explicit definition 

<constraint> ::= <value> | <range> 

<identifier> ::= ("""<letter> { <letter> | <digit> }""" | unnamed) 

<identifier_clause> ::= identifier <identifier> 

<maximum_value> ::= <value> 

<minimum_value> ::= <value> 

<natural_number> ::= <digit> {<digit>} 

<range> ::= within <minimum_value> to <maximum_value> 
 Note: An additional constraint is that maximum value must be equal to or greater than minimum value 

<transient_clause> ::= transient <float> <float> 

<type> ::= boolean | char | double | float | int | real | string 
 Note: These are basic types for use in the parameter value setting.  It may not be a complete list for the 
specific simulator system and some forms may not be supported by a given simulation system. 
<value> ::= <boolean_value> | <char_value> | <double_value> | <float_value> | <int_value> | <real_value> | 
    <string_value> 
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Table 3. Visual Language in BNF (abstract entity definitions) 
<abstract_entity> ::= entity "(" <entity_id_clause> <transient_clause> <abstract_entity_clause> ")" 

<abstract_entity_clause> ::= <identifier_clause> <entity_type_clause> [<attribute_list>] 
    {<entity_comm_link_clause>} {<entity_reaction_clause>} [<behavior_clause>] {<inner_entity>} 
<abstract_entity_set> ::= entity_set "(" <entity_id_clause> <transient_clause> <cardinality> 
<abstract_entity_clause> ")" 
<cardinality> ::= cardinality """<minimum_cardinality>..<maximum_cardinality>""" 
 Note: An additional constraint is that maximum cardinality must be equal to or greater than minimum 
cardinality 

<entity_clause> ::= (<reaction_entity> | <reaction_entity_set> | <inner_entity>) {<entity_clause>} 

<entity_comm_link_clause> ::= comm_link <entity_id_clause> 

<entity_id_clause> ::= entity_id <natural_number> 

<entity_reaction_clause> ::= reacts_to <entity_id_clause> [executing "(" <behavior_clause> ")"] 

<entity_type_clause> ::= entity_type <identifier> 

<inner_entity> ::= (<abstract_entity> | <abstract_entity_set>) 

<maximum_cardinality> ::= <natural_number> | * 

<minimum_cardinality> ::= <natural_number> 

<reaction_entity> ::= reaction_entity "(" <entity_id_clause> <entity_type_clause> ")" 

<reaction_entity_set> ::= reaction_entity_set "(" <entity_id_clause> <cardinality> <entity_type_clause> ")" 
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Table 4. Visual Language in BNF (behavior definitions) 
<atomic_node> ::= <basic_atomic_node> ([<regular_transition_statement>] | 
    {<conditional_transition_statement> | <permanent_reaction_statement> |<temporary_reaction_statement>}) 

<attribute_clause> ::= attribute <identifier> value """<value>""" 

<basic_atomic_node> ::= <node_id_clause> <transient_clause> <node_identifier_clause> {<attribute_clause>} 

<basic_multitask_node> ::= multitask_node <node_id_clause> <transient_clause> <node_identifier_clause> 
   contains "(" {<inner_node>} ")" 
<behavior> ::= start_node "(" <node_id_clause> <transient_clause> 
    (<regular_transition_statement> | <conditional_transition_statement> | <unreachable_node>) 
    {<conditional_transition_statement> | <unreachable_node>} ")" 

<behavior_clause> ::= behavior "(" <behavior> ")" 

<conditional_transition_statement> ::= conditional_transition "(" <guard_clause> <node> ")" 

<guard_clause> ::= guard ("""<boolean_expression>""" | undefined) [guard_identifier <identifier>] 
    [guard_sequence <natural_number>] 
<inner_atomic_node> ::= <basic_atomic_node> ([<inner_regular_transition_statement>] | 
    {<inner_conditional_transition_statement>}) 

<inner_conditional_transition_statement> ::= conditional_transition "(" <guard_clause> <inner_node> ")" 

<inner_node> ::= <inner_atomic_node> | <multitask_node> | <inner_unreachable_node> 

<inner_regular_transition_statement> ::= regular_transition "(" <inner_node> ")" 

<inner_unreachable_clause> ::= conditional_transition "(" <guard_clause> <node_id_clause> ")" 

<inner_unreachable_node> ::= unreachable "(" (<basic_multitask_node> | <basic_atomic_node>) 
    [<unreachable_reference_clause>] {<inner_unreachable_clause>} ")" 

<multitask_node> ::= <basic_multitask_node> [<regular_transition_statement>] 

<node> ::= <atomic_node> | <multitask_node> 

<node_id_clause> ::= node_id <natural_number> 

<node_identifier_clause> ::= [<identifier_clause>] [<short_identifier_clause>] 

<permanent_reaction_statement> ::= permanent_reaction "(" <guard_clause> <node> ")" 

<reaction_node> ::= <basic_atomic_node> | <basic_multitask_node> 

<regular_transition_statement> ::= regular_transition "(" <node> ")" 

<short_identifier_clause> ::= short_identifier <identifier> 



 

89 

<temporary_reaction_statement> ::= temporary_reaction "(" <guard_clause> <reaction_node> ")" 

<unreachable_node> ::= unreachable "(" (<basic_multitask_node> | <basic_atomic_node>) 
    [<unreachable_reference_clause>] {<unreachable_reaction_clause>} ")" 
<unreachable_reaction_clause> ::= (conditional_transition | permanent_reaction | temporary_reaction) 
    "(" <guard_clause> <node_id_clause> ")" 

<unreachable_reference_clause> ::= regular_transition "(" [multitask_node] <node_id_clause> ")" 
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Appendix C 

The following is the VSL file listing of the simple abstract scenario described in 

Section 5.3. 

scenario name "simple_scenario" 
( 
  entity 
  ( 
    entity_id 2 
    transient 203.0 10.0 
    identifier "US Cmd" 
    entity_type "DistFOR" 
    entity 
    ( 
      entity_id 6 
      transient 21.0 75.0 
      identifier "DefendRWA" 
      entity_type "AH64A" 
      behavior 
      ( 
        start_node 
        ( 
          node_id 7 
          transient 15.0 15.0 
          conditional_transition 
          ( 
            guard "OnOrder Command" 
            node_id 8 
            transient 95.0 125.0 
            identifier "FlyRoute" 
            conditional_transition 
            ( 
              guard "Duration(75);Unit('sec')" 
              node_id 9 
              transient 248.0 149.0 
              identifier "Hover" 
              conditional_transition 
              ( 
                guard "Duration(60);Unit('sec')" 
                node_id 10 
                transient 401.0 169.0 
                identifier "Land" 
              ) 
            ) 
          ) 
        ) 
      ) 
    ) 
    entity 
    ( 
      entity_id 5 
      transient 20.0 30.0 
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      identifier "DefendFWA" 
      entity_type "F14D" 
      behavior 
      ( 
        start_node 
        ( 
          node_id 6 
          transient 15.0 15.0 
          conditional_transition 
          ( 
            guard "OnOrder Command" 
            node_id 11 
            transient 121.99999999999999 109.0 
            identifier "Ingress" 
            conditional_transition 
            ( 
              guard "Duration(75);Unit('sec')" 
              node_id 12 
              transient 293.0 164.0 
              identifier "Return to Base" 
              short_identifier "Return" 
            ) 
          ) 
        ) 
      ) 
    ) 
  ) 
  entity 
  ( 
    entity_id 1 
    transient 10.0 10.0 
    identifier "USSR Cmd" 
    entity_type "OPFOR" 
    entity 
    ( 
      entity_id 3 
      transient 20.0 30.0 
      identifier "AttackFWA" 
      entity_type "MIG29" 
      behavior 
      ( 
        start_node 
        ( 
          node_id 4 
          transient 15.0 15.0 
          conditional_transition 
          ( 
            guard "OnOrder Command" 
            node_id 13 
            transient 145.0 122.0 
            identifier "Ingress" 
          ) 
        ) 
      ) 
    ) 
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    entity 
    ( 
      entity_id 4 
      transient 21.0 74.0 
      identifier "AttackRWA" 
      entity_type "Mi24" 
      behavior 
      ( 
        start_node 
        ( 
          node_id 5 
          transient 15.0 15.0 
          conditional_transition 
          ( 
            guard "OnOrder Command" 
            node_id 14 
            transient 77.0 106.0 
            identifier "Fly Route" 
            conditional_transition 
            ( 
              guard "Duration(180);Unit('sec')" 
              node_id 15 
              transient 204.0 164.0 
              identifier "Hover" 
              conditional_transition 
              ( 
                guard "Duration(60);Unit('sec')" 
                node_id 16 
                transient 347.0 176.0 
                identifier "Land" 
              ) 
            ) 
          ) 
        ) 
      ) 
    ) 
  ) 
) 
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